Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T21:26:05.742Z Has data issue: false hasContentIssue false

Environmental Effects on Mechanical Disordering of Ni3Al-Base Alloy

Published online by Cambridge University Press:  01 January 1992

S. Gialanella
Affiliation:
Dipto di Ingegneria dei Materiali, Università di Trento, 38050, Mesiano, Trento, Italy
M. Guella
Affiliation:
Dipto di Ingegneria dei Materiali, Università di Trento, 38050, Mesiano, Trento, Italy
F. Marino
Affiliation:
Dipto di Scienza dei Materiali e Ingegneria Chirnica, Pol. di Torino, 10129, Torino, Italy
M.D. Baro'
Affiliation:
Dept. de Fisica, Universitat Aut. de Barcelona, 08193, Bellaterra, Barcelona, Spain
J. Malagelada
Affiliation:
Dept. de Fisica, Universitat Aut. de Barcelona, 08193, Bellaterra, Barcelona, Spain
S. Surinach
Affiliation:
Dept. de Fisica, Universitat Aut. de Barcelona, 08193, Bellaterra, Barcelona, Spain
R.W. Cahn
Affiliation:
Dept. of Mat. Sci. and Metallurgy, Univ. of Cambridge, CB23QZ, Cambridge, U.K.
Get access

Abstract

We present some results regarding the influence of grinding atmosphere on the phenomena occurring during mechanical milling of a Ni3Al-base alloy. We have disordered this permanently ordered alloy by ball-milling in a vibratory mill, using alternatively argon and hydrogen atmospheres. We observed a slower reduction of the long-range order parameter during experiments carried out under a hydrogen atmosphere, regardless of the used grinding media. We discuss our Findings in terms of the effects, such as in grain boundary cohesive strength or localize ductility enhancement, that hydrogen may induce in such alloy. The microstructural parameters of the powders at different stages of disordering have been investigated using calorimetric tests, x-ray diffraction analysis and microscopic observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meier, G.H., Oxidation of High-Temperature Intermetallics, edited by Grobstein, T. and Doychak, J. (TMS, Warrendale, 1988).Google Scholar
2. Meier, G.H. and Pettit, F.S., Mat. Sci. Tech., 8, 331 (1992).Google Scholar
3. Hippsley, C. A. and Strangwood, M., Mat. Sci. Tech., 8, 350 (1992)Google Scholar
4. Froes, F.H. Eylon, D. and Suryanarayana, C., JOM, 42(3), 26 (1990)Google Scholar
5. Harris, J.H., Curtin, W.A. and Schultz, L., J. Mat. Res., 3, 872 (1992)Google Scholar
6. Baricco, M. et al. , in Ordering and Disordering of Alloys” edited by Yavari, A.R., (Elsevier, 1992)Google Scholar
7. Hashimoto, H. and Latanision, R.M., Acta Met., 36, 1837 (1988)Google Scholar
8. Eckert, J., Holzer, J.C., Krill, C. E. and Johnson, W.L., Mat. Sci. For., 8890, 505 (1992)Google Scholar
9. Barò, M.D., Malgelada, J., Suriñach, S., Mora, M.T., Gialanella, S. and Cahn, R.W., Acta Met. Mat. in press (1992)Google Scholar
10. Jang, J.S.C. and Koch, C.C., J. Mat. Res., 5, 498 (1990)Google Scholar
11. Kuruvilla, A.K. and Stoloff, N.S., Scripta Met., 19, 83 (1985)Google Scholar
12. Robertson, I.M. and Birnbaum, H.K., Acta Met., 34, 353 (1986)Google Scholar
13. , Bakker and Di, L.M., Mat. Sci. For., 8890, 27 (1992)Google Scholar
14. Korbel, A. and Martin, P., Acta Met., 36, 2575 (1988)Google Scholar
15. Li, S., Wang, K., Sun, L. and Wang, Z., Scripta Met. Mat., 27, 437 (1992)Google Scholar
16. Malagelada, J., Suriñach, S., Barò, M.D., Gialanella, S., Cahn, R.W., Mat. Sci. Forum, 8890, 497 (1992)Google Scholar
17. Harris, S.R., Pearson, D.H., Garland, C.M., Fultz, B., J. Mat. Res., 6, 2019 (1991)Google Scholar