Skip to main content Accessibility help

Enhancement of Thermoelectric Figure-of-Merit by a Nanostructure Approach

  • Zhifeng Ren (a1), Bed Poudel (a2), Yi Ma (a3), Yucheng Lan (a4), Austin Minnich (a5), Andy Muto (a6), Jian Yang (a7), Bo Yu (a8), Xiao Yan (a9), Dezhi Wang (a10), Junming Liu (a11), Mildred Dresselhaus (a12) and Gang Chen (a13)...


The dimensionless thermoelectric figure-of-merit (ZT) in bulk materials has remained about 1 for many years. Here we show that a significant ZT improvement can be achieved in nanocrystalline bulk materials. These nanocrystalline bulk materials were made by hot-pressing nanopowders that are ball-milled from either crystalline ingots or elements. Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects. More importantly, the nanostructure approach has been demonstrated in a few thermoelectric material systems, proving its generosity. The approach can be easily scaled up to multiple tons. Thermal stability studies have shown that the nanostructures are stable at the application temperature for an extended period of time. It is expected that such enhanced materials will make the existing cooling and power generation systems more efficient.



Hide All
1 Rowe, D. M., Ed., CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995).
2 Goldsmid, H. J., Thermoelectric Refrigeration (Plenum Press, New York, 1964).
3 Tritt, T. M., Ed., Semiconductors and Semimetals (Academic Press, San Diego, CA, 2001).
4 Disalvo, F. J., Science 285, 703 (1999).
5 Sales, B. C., Science 295, 1248 (2002).
6 Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B., Nature 413, 597 (2001).
7 Harman, T. C., Taylor, P. J., Walsh, M. P., and LaForge, B. E., Science 297, 2229 (2002).
8 Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G., Science 303, 818 (2004).
9 Poudel, B., Hao, Q., Ma, Y., Lan, Y. C., Minnich, A., Yu, B., Yan, X., Wang, D. Z., Muto, A., Vashaee, D., Chen, X. Y., Liu, J. M., Dresselhaus, M., Chen, G., and Ren, Z. F., Science 320, 634 (2008).
10 Ma, Y., Hao, Q., Poudel, B., Lan, Y. C., Yu, B., Wang, D. Z., Chen, G., and Ren, Z. F., Nano Letters 8, 2580 (2008).
11 Lan, Y. C., Poudel, B., Ma, Y., Wang, D. Z., Dresselhaus, M. S., Chen, G., and Ren, Z. F., Nano Letters (2009) (in press)
12 Joshi, G., Lee, H., Lan, Y. C., Wang, X. W., Zhu, G. H., Wang, D. Z., Gould, R.W., Cuff, D. C., Tang, M. Y., Dresselhaus, M. S., Chen, G., and Ren, Z. F., Nano Letters 8, 2580 (2008).
13 Wang, X. W., Lee, H., Lan, Y. C., Zhu, G. H., G. Joshi, Wang, D. Z., Yang, J., Muto, A. J., Tang, M. Y., Klatsky, J., Song, S., Dresselhaus, M. S., Chen, G., and Ren, Z. F., Appl. Phys. Lett. 93, 193121 (2008).
14 Zhao, X. B., Ji, X. H., Zhang, Y. H., Zhu, T. J., Tu, J. P., and Zhang, X. B., Appl. Phys. Lett. 86, 062111 (2005).
15 Tang, X. F., Xie, W. J., Li, H., Zhao, W. Y., and Zhang, Q. J., Appl. Phys. Lett. 90, 012102 (2007).
16 Harman, T. C., Miller, S. E., and Goeing, H. L., Bull. Amer. Phys. Soc. 30, 35, (1955).
17 Thonhauser, T., Jeon, G. S., Mahan, G. D., and Sofo, J. O., Phys. Rev. B. 68, 205207 (2003).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed