Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T23:53:29.061Z Has data issue: false hasContentIssue false

Enhancement of Thermoelectric Figure-of-Merit by a Nanostructure Approach

Published online by Cambridge University Press:  31 January 2011

Zhifeng Ren
Affiliation:
renzh@bc.edu, Boston College, 140 Commonwealth Ave., Chestnut Hill, Massachusetts, 02467, United States
Bed Poudel
Affiliation:
poudel@bc.edu, GMZ Energy Inc., Waltham, United States
Yi Ma
Affiliation:
mayi@bc.edu, Boston College, Physics, Chestnut Hill, United States
Yucheng Lan
Affiliation:
lany@bc.edu, Boston College, Physics, Chestnut Hill, United States
Austin Minnich
Affiliation:
aminnich@MIT.EDU, MIT, Cambridge, United States
Andy Muto
Affiliation:
andymuto@MIT.EDU, MIT, Cambridge, United States
Jian Yang
Affiliation:
yangjm@bc.edu, Boston College, Chestnut Hill, United States
Bo Yu
Affiliation:
yub@bc.edu, Boston College, Chestnut Hill, United States
Xiao Yan
Affiliation:
yanxa@bc.edu, Boston College, Chestnut Hill, United States
Dezhi Wang
Affiliation:
wangda@bc.edu, Boston College, Chestnut Hill, United States
Junming Liu
Affiliation:
liujm@nju.edu.cn, Nanjing University, Nanjing, China
Mildred Dresselhaus
Affiliation:
millie@mgm.mit.edu, MIT, Cambridge, United States
Gang Chen
Affiliation:
gchen2@mit.edu, MIT, Cambridge, United States
Get access

Abstract

The dimensionless thermoelectric figure-of-merit (ZT) in bulk materials has remained about 1 for many years. Here we show that a significant ZT improvement can be achieved in nanocrystalline bulk materials. These nanocrystalline bulk materials were made by hot-pressing nanopowders that are ball-milled from either crystalline ingots or elements. Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects. More importantly, the nanostructure approach has been demonstrated in a few thermoelectric material systems, proving its generosity. The approach can be easily scaled up to multiple tons. Thermal stability studies have shown that the nanostructures are stable at the application temperature for an extended period of time. It is expected that such enhanced materials will make the existing cooling and power generation systems more efficient.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rowe, D. M., Ed., CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995).Google Scholar
2 Goldsmid, H. J., Thermoelectric Refrigeration (Plenum Press, New York, 1964).Google Scholar
3 Tritt, T. M., Ed., Semiconductors and Semimetals (Academic Press, San Diego, CA, 2001).Google Scholar
4 Disalvo, F. J., Science 285, 703 (1999).Google Scholar
5 Sales, B. C., Science 295, 1248 (2002).Google Scholar
6 Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B., Nature 413, 597 (2001).Google Scholar
7 Harman, T. C., Taylor, P. J., Walsh, M. P., and LaForge, B. E., Science 297, 2229 (2002).Google Scholar
8 Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G., Science 303, 818 (2004).Google Scholar
9 Poudel, B., Hao, Q., Ma, Y., Lan, Y. C., Minnich, A., Yu, B., Yan, X., Wang, D. Z., Muto, A., Vashaee, D., Chen, X. Y., Liu, J. M., Dresselhaus, M., Chen, G., and Ren, Z. F., Science 320, 634 (2008).Google Scholar
10 Ma, Y., Hao, Q., Poudel, B., Lan, Y. C., Yu, B., Wang, D. Z., Chen, G., and Ren, Z. F., Nano Letters 8, 2580 (2008).Google Scholar
11 Lan, Y. C., Poudel, B., Ma, Y., Wang, D. Z., Dresselhaus, M. S., Chen, G., and Ren, Z. F., Nano Letters (2009) (in press)Google Scholar
12 Joshi, G., Lee, H., Lan, Y. C., Wang, X. W., Zhu, G. H., Wang, D. Z., Gould, R.W., Cuff, D. C., Tang, M. Y., Dresselhaus, M. S., Chen, G., and Ren, Z. F., Nano Letters 8, 2580 (2008).Google Scholar
13 Wang, X. W., Lee, H., Lan, Y. C., Zhu, G. H., G. Joshi, Wang, D. Z., Yang, J., Muto, A. J., Tang, M. Y., Klatsky, J., Song, S., Dresselhaus, M. S., Chen, G., and Ren, Z. F., Appl. Phys. Lett. 93, 193121 (2008).Google Scholar
14 Zhao, X. B., Ji, X. H., Zhang, Y. H., Zhu, T. J., Tu, J. P., and Zhang, X. B., Appl. Phys. Lett. 86, 062111 (2005).Google Scholar
15 Tang, X. F., Xie, W. J., Li, H., Zhao, W. Y., and Zhang, Q. J., Appl. Phys. Lett. 90, 012102 (2007).Google Scholar
16 Harman, T. C., Miller, S. E., and Goeing, H. L., Bull. Amer. Phys. Soc. 30, 35, (1955).Google Scholar
17 Thonhauser, T., Jeon, G. S., Mahan, G. D., and Sofo, J. O., Phys. Rev. B. 68, 205207 (2003).Google Scholar