Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T16:12:52.803Z Has data issue: false hasContentIssue false

Enhancement of the Quantum-Confined Stark Shift in Disordered, Strained InGaAs/GaAs Single Quantum Wells

Published online by Cambridge University Press:  21 February 2011

Joseph Micallef
Affiliation:
Department of Electronic & Electrical Engineering, University of Surrey, Guildford
E. Herbert Li
Affiliation:
Surrey, GU2 5XH, UK.
Get access

Abstract

Theoretical results are presented showing how quantum well disordering modifies the quantum-confined Stark effect in strained InGaAs/GaAs single quantum wells. An error function distribution is used to model the constituent atom composition after interdiffusion. It is shown that for a sufficiently long interdiffusion the exciton Stark shift in the disordered quantum well is greater than in the as-grown quantum well and that the change in electroabsorption near the fundamental absorption edge is larger in the disordered well than in the as-grown well for the same applied electric field. These results demonstrate the potential of using disordering to achieve improved performance in strained InGaAs/GaAs quantum well electroabsorption modulators.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Miller, D.A.B., Opt. Quantum Electron. 22, S61 (1990).Google Scholar
2 Miller, D.A.B., Chemla, D.S., Damen, T.C., Gossard, A.C., Wiegmann, W., Wood, T.H., and Burrus, C.A., Phys. Rev. Lett. 53, 2173 (1984).Google Scholar
3 Camras, M.D., Holonyak, N., Jr., Burnham, R.D., Streifer, W., Scifres, D.R., Paoli, T.L., and Lindström, C., J. Appl. Phys. 54, 5637 (1983).Google Scholar
4 Furtado, M.T., Loural, M.S.S., Sato, E.A., and Sacilotti, M.A., Semicon. Sci. Technol. 7, 744 (1992).Google Scholar
5 Humbach, O., Stöhr, A., Auer, U., Larkins, E.C., Ralston, J.D., and Jager, D., IEEE Photon. Technol. Lett. 5, 49 (1993).Google Scholar
6 Chen, T.R., Eng, L., Zhao, B., Zhuang, Y.H., Sanders, S., Morkoç, H., and Yariv, A., IEEE J. Quantum Electron. QE-26, 1183 (1990).Google Scholar
7 Nishi, K. and Hiroshima, T., Appl. Phys. Lett. 51, 320 (1987).Google Scholar
8 Ji, G., Huang, D., Reddy, U. K., Henderson, T. S., Houdré, R., and Morkoç, H., J. Appl. Phys. 62, (1987).Google Scholar
9 People, R., Phys. Rev. B 32, (1985).Google Scholar
10 Schlesinger, T. E. and Kuech, T. F., Appl. Phys. Lett. 49, (1986).Google Scholar
11 Micallef, J., Li, E.H., and Weiss, B.L., Superlatt. Microstruct. 13, 125 (1993).Google Scholar
12 Bastard, G. and Brum, J.A., IEEE J. Quantum Electron. QE-22, 1625 (1986).Google Scholar
13 Coffey, D., J. Appl. Phys. 63, 4626 (1988).Google Scholar
14 Corzine, S.W., Yan, R.H., and Coldren, L.A., Appl. Phys. Lett. 57, 2835 (1990).Google Scholar
15 Micallef, J., Li, E.H., Chan, K.S., and Weiss, B.L., Proc. SPIE 1675, 211 (1992).Google Scholar
16 Bloss, W.L., J. Appl. Phys. 65, 4789 (1989).Google Scholar
17 Micallef, J., Li, E.H., and Weiss, B.L., Superlatt. Microstruct. 13, 315 (1993).Google Scholar
18 Hiroshima, T. and Nishi, K., J. Appl. Phys. 62, 3360 (1987).Google Scholar
19 Li, E.H., Chan, K.S., Weiss, B.L., and Micallef, J., Appl. Phys. Lett. 63, 533 (1993).Google Scholar