Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-19T20:03:39.975Z Has data issue: false hasContentIssue false

Enhancement of Oxidation Resistance of Silicon Carbide by High-Dose and Multi-Energy Aluminum Implantation

Published online by Cambridge University Press:  22 February 2011

Zunde Yang
Affiliation:
Stevens Institute of Technology, Hoboken, NJ 07030
Honghua Du*
Affiliation:
Stevens Institute of Technology, Hoboken, NJ 07030
Matthew Libera
Affiliation:
Stevens Institute of Technology, Hoboken, NJ 07030
Stephen P. Withrow
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Luis M. Casas
Affiliation:
Army Research Laboratory, Fort Monmouth, NJ 07703
Richard T. Lareau
Affiliation:
Army Research Laboratory, Fort Monmouth, NJ 07703
*
To whom correspondence should be addressed
Get access

Abstract

High-dose and multi-energy aluminum implantation of α-SiC (0001) was carried out to achieve a broad aluminum distribution extending from the sample surface to a depth of approximately 350 nm. Oxidation resistance of the implanted crystals was studied in 1 atm flowing oxygen at 1300°C. Aluminum implantation resulted in a 45% improvement in the oxidation resistance of α-SiC as compared with unimplanted crystals due to the formation of structurally dense mullite (3A12O3.2SiO2) in the oxidation scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lankford, J., Wei, W., and Kossowsky, R., J. Mater. Sci. 22, 2069 (1987).Google Scholar
2. Fleischer, E.L., Hertl, W., Alford, T.L., Borgesen, P., and Mayer, J.W., J. Mater. Res. 5 (2), 385 (1990).Google Scholar
3. Singer, I.L., Surface and Coating Technology, 33, 387 (1987).Google Scholar
4. Noda, S., Doi, H., Hioki, T., Kawamoto, J., and Kamigaito, O., J. Jap. Soc. Powder and Powder Metall. 35 (1), 12 (1988).Google Scholar
5. Du, H., Yang, Z., Libera, M., Jacobson, D., Wang, Y.C. and Davis, R.F., submitted to J. Am. Ceram. Soc. (1993).Google Scholar
6. Du, H., Annual Report, National Science Foundation, 1992.Google Scholar
7. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed., John Willey & Sons (1976).Google Scholar
8. Blachere, J. R. and Pettie, F. S., High Temperature Corrosion of Ceramics, Noyes Publications (1989).Google Scholar
9. Rawson, H., Properties and Applications of Glass, Glass Science and Technology 3, Elsevier Scientific Publishing Co., Inc. (1980).Google Scholar
10. Bunker, S.N. and Armini, A.J., Nucl. Inst. and Meth. B39, 7 (1989).Google Scholar
11. Du, H., Yang, Z., Libera, M., Jacobson, D., Wang, Y.C. and Davis, R.F., J. Amer. Ceram. Soc. 76 (2), 330 (1993).Google Scholar
12. Du, H., Yang, Z., Libera, M., Jacobson, D., Wang, Y.C. and Davis, R.F., submitted to J. Mater. Sci. (1993).Google Scholar
13. Muehlhoff, L., Choyke, W., Bozack, M., and Yates, J., J. Appl. Phys. 60, 2842 (1986).Google Scholar
14. Jack, K.H., J. Mater. Sci. 11, 1135 (1976).Google Scholar
15. Kobayashi, K. and Kimura, S., Corrosion Protection Technology, 32, 331 (1983).Google Scholar