Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T07:51:22.160Z Has data issue: false hasContentIssue false

Enhancement of Ionic Diffusion by Microwave-Field-Induced Ponderomotive Forces at Physical Interfaces

Published online by Cambridge University Press:  10 February 2011

J. H. Booske
Affiliation:
ECE Dept, University of Wisconsin, Madison, WI 53706, booske@engr.wisc.edu
R. F. Cooper
Affiliation:
Materials Science and Engr. Dept., Univ. Wisconsin, Madison, WI 53706
S. A. Freeman
Affiliation:
Hewlett-Packard Corporation, Microwave Technology Division, Santa Rosa, CA 95403
K. R. Binger
Affiliation:
ECE Dept, University of Wisconsin, Madison, WI 53706
Get access

Abstract

Numerous observations have been reported in the literature of enhanced mass transport and solid-state reaction rates during microwave heating or processing of a variety of ceramic, glass, and polymer materials. Recent research reveals that these phenomena are probably the result of a previously-unknown driving force for ionic mass transport. The driving force--termed a “ponderomotive” (mass-moving) force--results from the application of intense, high-frequency electric fields near physical interfaces (e.g., free surfaces, grain boundaries). Experiments, theory, and numerical simulations all demonstrate that this driving force can influence solid state reaction kinetics by enhancing mass transport rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rothman, S.J., Mat. Res. Soc. Symp. Proc. 347 9 (1994).Google Scholar
2. Bykov, Y.V., Eremeev, A.E., Holoptsev, V.V., Mat. Res. Soc. Symp. Proc. 347 585 (1994).Google Scholar
3. Wroe, R. and Rowley, A.T., J. Mat. Sci. 31 2019 (1996).Google Scholar
4. Dadon, D., Martin, L.P., Rosen, M., Birman, A., Gershon, D., Calame, J.P., Levush, B., and Carmel, Y., J. Mat. Syn. and Proc. 4 95 (1996).Google Scholar
5. Willert-Porada, M.. Ceram. Trans. 80 153 (1997).Google Scholar
6. Janney, M.A. and Kimrey, H.D., Mat. Res. Soc. Symp. Proc. 189 215 (1990).Google Scholar
7. Fathi, Z., Clark, D.E., and Hutcheon, R., Mat. Res. Soc. Symp. Proc. 269 347 (1992).Google Scholar
8. Palaith, D., Silberglitt, R., Wu, C.C.M., Kleiner, R., and Libelo, E., Am. Cer. Soc. Bull. 68 1601 (1989).Google Scholar
9. Willert-Porada, M., Mat. Res. Soc. Symp. Proc. 430 403 (1996).Google Scholar
10. Binner, J.G.P., Hassine, N.A., and Cross, T.E., J. Mat. Sci. 30 5389 (1995).Google Scholar
11. Lewis, D.A., Summers, J.D., Ward, T.C. and McGrath, J.E., J.Poly.Sci., Polym. Chem. Ed. 30 1647 (1992).Google Scholar
12. Grellinger, D.J. and Janney, M.A., Ceram. Trans. 36 529 (1993).Google Scholar
13. Westaway, K.C. and Gedye, R.N., J. Micr. Power and Elect. Energy 30 219 (1995).Google Scholar
14. Grellinger, D.J., Booske, J.H., Freeman, S.A., and Cooper, R.F., Ceram. Trans. 59, 465472 (1995).Google Scholar
15. Binger, K.R., Freeman, S.A., Grellinger, D.J., Cooper, R.F., and Booske, J.H., MRS Symp. Proc. 430, 453458 (1996).Google Scholar
16. Freeman, S.A., Ph.D. Dissertation, University of Wisconsin-Madison, (1996).Google Scholar
17. Booske, J.H., Cooper, R.F., and Dobson, I., J. Mater. Res. 7, 495501 (1992).Google Scholar
18. Reardon, B.J., Kieffer, J., Booske, J.H., and Cooper, R.F., Ceramic Trans. 36, 239246 (1993).Google Scholar
19. Freeman, S., Booske, J., Cooper, R., and Meng, B., Mat. Res. Soc. Symp. Proc. 347, 479485 (1994).Google Scholar
20. Freeman, S.A., Booske, J.H., and Cooper, R.F., Rev. Sci. Instrum. 66 [6], 36063609 (1995).Google Scholar
21. Rybakov, K.I. and Semenov, V.E., Phys Rev. B 49 64 (1994).Google Scholar
22. Semenov, V.E., Rybakov, K.I., Freeman, S.A., Booske, J.H., and Cooper, R.F., Phys. Rev. B, 55 [6], 35593567 (1997).Google Scholar