Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T13:37:16.199Z Has data issue: false hasContentIssue false

Enhanced Interdiffusion of GaAs-AlgaAs Interfaces Following Ion Implantation and Rapid Thermal Annealing

Published online by Cambridge University Press:  21 February 2011

K. B. Kahen
Affiliation:
Corporate Research Labs, Eastman Kodak Company, Rochester NY 14650-2011
G. Rajeswaran
Affiliation:
Corporate Research Labs, Eastman Kodak Company, Rochester NY 14650-2011
D. L. Peterson
Affiliation:
Corporate Research Labs, Eastman Kodak Company, Rochester NY 14650-2011
L. R. Zheng
Affiliation:
Corporate Research Labs, Eastman Kodak Company, Rochester NY 14650-2011
N. L. Ott
Affiliation:
Corporate Research Labs, Eastman Kodak Company, Rochester NY 14650-2011
Get access

Abstract

The interdiffusion of GaAs-AlGaAs interfaces has been shown to be enhanced following ion implantation and rapid thermal annealing at approximately 950°C. A model is presented which explains this phenomenon. It is based on the solution of coupled diffusion equations involving the excess vacancy and Al distributions following ion implantation. Both initial distributions are obtained from the solution of a three-dimensional Monte Carlo simulation of ion implantation into a heterostructure sample. The model is found to be in excellent agreement with several sets of experimental data. More specifically, the model is shown to be valid for ions which do not diffuse appreciably in the time frame of the rapid thermal annealing and for as-implanted vacancy concentrations below ∼6×1019 cm−3. Above that concentration, some vacancies are hypothesized to coalesce, thus being unavailable to assist in the enhanced interdiffusion process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meehan, K., Brown, J.M., Holonyak, N. Jr., Burnham, R.D., Paoli, T.L., Streifer, W., Appl. Phys. Lett. 4A, 700 (1984).Google Scholar
2. Cibert, J., Petroff, P.M., Werber, D.J., Pearton, S.J., Gossard, A.C., English, J.H., Appl. Phys. Lett. 42, 223 (1986).Google Scholar
3. Kash, K., Tell, B., Grabbe, P., Dobisz, E.A., Craighead, H.G., Tamargo, M.C., J. Appl. Phys. 53, 190 (1988).Google Scholar
4. Kobayashi, J., Fukunaga, T., Ishida, K., Nakashima, H., Flood, J.D., Bahir, G., Merz, J.L., Appl. Phys. Lett.,50 519 (1987).Google Scholar
5. Lee, S.T., Braunstein, G., Fellinger, P., Kahen, K.B., Rajeswaran, G., Appl. Phys. Lett. 53, 2531 (1988).Google Scholar
6. Kahen, K.B., Rajeswaran, G., Lee, S.T., Appl. Phys. Lett. 53, 1635 (1988).Google Scholar
7. Biersack, J.P., Nucl. Instrum. Methods BI 9, 32 (1987).Google Scholar
8. Zeigler, J.F., Biersack, J.P., Littmark, U., The Stopping and Range of Ions in Solids, Vol.1 (Pergamon, New York, 1986).Google Scholar
9. Potts, H.R. and Pearson, G.L., J. Appl. Phys. 37, 2098 (1966).Google Scholar
10. Logan, R.M. and Hurle, D.T.J., J. Phys. Chem. Solids 32, 1739 (1971).Google Scholar
11. Kahen, K.B., Peterson, D.L., Rajeswaran, G., Lawrence, D.J., submitted to Appl. Phys. Lett.Google Scholar
12. Schlesinger, T.E. and Kuech, T., Appl. Phys. Lett. 49, 521 (1986).Google Scholar
13. Kahen, K.B. and Rajeswaran, G., to be published in J. Appl. Phys.Google Scholar
14. Chow, P.C., Amer. J. Phys., 40 730 (1972).Google Scholar