Skip to main content Accessibility help

Enhanced Absorption in Amorphous Silicon Solar Cells Using Plasmonic and Photonic Crystals – Measurement and Simulation

  • Benjamin Curtin (a1), Rana Biswas (a1) (a2) and Vikram Dalal (a1)


We develop experimentally and theoretically plasmonic and photonic crystals for enhancing thin film silicon solar cells. Thin film amorphous silicon (a-Si:H) solar cells suffer from decreased absorption of red and near-infrared photons, where the photon absorption length is large. Simulations predict maximal light absorption for a pitch of 700-800 nm for photonic crystal hole arrays in silver or ZnO/Ag back reflectors, with absorption increases of ~12%. The photonic crystal improves over the ideal randomly roughened back reflector (or the ‘4n2 limit’) at wavelengths near the band edge. We fabricated metallic photonic crystal back-reflectors using photolithography and reactive-ion etching. We conformally deposited a-Si:H solar cells on triangular lattice hole arrays of pitch 760 nm on silver back-reflectors. Electron microscopy demonstrates excellent long range periodicity and conformal a-Si:H growth. The measured quantum efficiency increases by 7-8 %, relative to a flat reflector reference device, with enhancement factors exceeding 6 at near-infrared wavelengths. The photonic crystal back reflector strongly diffracts light and increases optical path lengths of solar photons.



Hide All
1. Ferlauto, A.S., Ferreira, G. M., Pearce, J. M., Wronski, C. R., Collins, R. W., Deng, X., Ganguly, G., J. Appl. Phys. 92, 2424 (2002).
2. Zhou, D. and Biswas, R., J. Appl. Phys. 103, 093102 (2008). Biswas, R., Zhou, D., Phys. Status Solidi A 207, No. 3, 667 (2010).
3. Zeng, L., Bermel, P., Yi, Y., Alamariu, B. A., Broderick, K. A., Liu, J., Hong, C., Duan, X., Joannopoulos, J., and Kimerling, L. C., Appl. Phys. Lett. 93, 221105 (2008).
4. Bermel, P., Luo, C., Zeng, L., Kimerling, L.C., Joannopoulos, J., Opt. Express, 15, 16986, (2007).
5. Yan, B., Owens, J. M., Jiang, C., Yang, J. and Guha, S., Mater. Res. Soc. Symp. Proc. 862, A23.3.1 (2005).
6. Springer, J., Poruba, A., Mullerova, L., Vanecek, M., Kluth, O. and Rech, B., J. Appl. Phys. 95, 1427 (2004).
7. Dahal, L. R., Sainju, D., Li, J., Stoke, J. A., Podraza, N., Deng, X., and Collins, R. W., 33rd IEEE Photovoltaic Specialists Conference, 2008. PVSC 2008, pg.1-6. DOI 10.1109/PVSC.2008.4922502.
8. Yablonovitch, E., J. Opt. Soc. Am. 72, 899 (1982).
9. Nelson, J., The Physics of Solar Cells, (Imperial College Press, London, 2003), p. 279.
10. Catchpole, K., Green, M., J. Appl. Phys. 101, 063105 (2007).
11. Biswas, R., Ding, C.G., Puscasu, I., Pralle, M., McNeal, M., Daly, J., Greenwald, A. and Johnson, E., Phys. Rev. B. 74, 045107 (2006).
12.Analysis of Microelectronic and Photonic Structures (AMPS) simulation module, Penn State University.
13. Haug, F.-J., Soderstrom, T., Python, M., Terrazzoni-Daudrix, V., Niquille, X., Ballif, C., Solar energy and Materials 93 884 (2009). Proc. of the 21st European PVSEC, 1651, (2006).
14. Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Schropp, R. E. I., Atwater, H. A., and Polman, A., Appl. Phys. Lett. 95, 183503 (2009).
15. Beck, F. J., Mokapatti, S., Polman, A., and Catchpole, K., Appl. Phys. Lett. 96, 033113 (2010).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed