Published online by Cambridge University Press: 21 March 2011
We developed a depth-sensitive x-ray diffraction technique in which diffraction profiles are measured at x-ray energies that are varied by small steps. The method is intended for synchrotron beam lines and provides non-destructive mapping of structural characteristics in inhomogeneous polycrystalline materials. Depth resolution is achieved due to an energy dependence of the x-ray penetration length. Application of this technique to seashells allowed us to extract spatial distributions of preferred orientation and strain components, which revealed pronounced variations of the shell microstructure in three dimensions. The results shed light on “engineering solutions” by mollusk. The developed technique can be used to characterize various laminated structures and composite materials.