Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T13:27:33.615Z Has data issue: false hasContentIssue false

Energy behavior with magnetic field of negatively charged magnetoexcitons in quantum wells and heterojunctions

Published online by Cambridge University Press:  10 February 2011

F. M. Munteanu
Affiliation:
N.H.M.F.L., Los Alamos National Laboratory, Los Alamos, NM 87545 Dept. of Physics, Northeastern University, Boston, MA 02115
Y. Kim
Affiliation:
N.H.M.F.L., Los Alamos National Laboratory, Los Alamos, NM 87545
C. H. Perry
Affiliation:
Dept. of Physics, Northeastern University, Boston, MA 02115
D. G. Rickel
Affiliation:
N.H.M.F.L., Los Alamos National Laboratory, Los Alamos, NM 87545
J. A. Simmons
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185
J. L. Reno
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185
Get access

Abstract

We present the results of the magneto-photoluminescence measurements performed on modulation doped GaAs/AlGaAs heterostructures in high magnetic fields (up to 60T) and low temperatures (0.37−1.5K). With increasing magnetic field we observe the formation of the triplet and singlet states of negatively charged magneto-excitons (X) in addition to the neutral exciton (X0). Their behavior with field strongly depends on the sample geometry. In the case of a modulation doped quantum well (QW) with a well-width of 200A, the and states cross at a magnetic field of about 40T, whereas for a modulation-doped single heterojunction (SHJ) these states show no crossing over the whole range of available fields.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Keng, K., Cox, R. T., d'Aubigne, Y. M., Bassani, F., Saminadayar, K. and Tatarenko, S., Phys. Rev. Lett. 71, 1752(1993)Google Scholar
2. Finkelstein, G., Shtrikman, H. and Bar-Joseph, I. Phys. Rev. Lett. 74, 976(1995)Google Scholar
3. Finkelstein, G., Shtrikman, H. and Bar-Joseph, I. Phys. Rev. B 53, R1709 (1996)Google Scholar
4. Shields, A. J., Osborne, J. L., Simmons, M. Y., Pepper, M. and Ritchie, D. A., Phys. Rev. B 52, R5523 (1995)Google Scholar
5. Shields, A. J., Pepper, M., Simmons, M. Y. and Ritchie, D. A., Phys. Rev. B 52, 7841(1995)Google Scholar
6. Shields, A. J., Pepper, M., Ritchie, D. A., Simmons, M. Y. and Jones, G. A. C., Phys. Rev. B 51, 18049(1995)Google Scholar
7. Buhmann, H., Mansouri, L., Wang, J., Benton, P. H., Mori, N., Eaves, L., M. Henini and M Potemski Phys. Rev. B 51, 7969(1995)Google Scholar
8. Stebe, B. and Ainane, A., Superlattices and Microst. 5, 545(1989)Google Scholar
9. Okamura, H., Heiman, D., Sundaram, M. and Gossard, A.C., Phys. Rev. B 58, R15985 (1998)Google Scholar
10. Shields, A.J., Pepper, M., Ritchie, D.A. and Simmons, M.Y., Adv. in Phys. 44, 4772 (1995)Google Scholar
11. Glasberg, S., Finkelstein, G., H. Shtrikman and I. Bar-Joseph Phys. Rev. B 59, R10425 (1999)Google Scholar
12. Chapman, J. R., Johnson, N. F. and Nicopoulos, V. N., Phys. Rev. B 55, R10221 (1997)Google Scholar
13. Whittaker, D. M. and Shields, A. J., Phys. Rev. B 56, 15185(1997)Google Scholar
14. Chapman, J. R., Johnson, N. F. and Nicopoulos, V. N., Phys. Rev. B 57, 1762(1998)Google Scholar
15. Palacios, J. J., Yoshioka, D. and MacDonald, A. H., Phys. Rev. B 54, R2296 (1996)Google Scholar
16. Perry, C. H., Kim, Y. and Rickel, D. G., Physica B 246–247, 182 (1998)Google Scholar
17. Snelling, M. J., Blackwood, E., McDonagh, C. J., Harley, R. T. and Foxon, C. T. B., Phys. Rev. B 45, 3922(1992)Google Scholar
18. Bauer, G. E. W., Phys. Rev. B 45, 9153(1992)Google Scholar
19. Uenoyama, T. and Sham, L. J., Phys. Rev. B 39, 11044(1989)Google Scholar