Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T05:54:29.120Z Has data issue: false hasContentIssue false

Energy Barrier for ‘Magic-Strain’ Transformations in Crystals with Fcc Lattices

Published online by Cambridge University Press:  26 February 2011

L.L. Boyer
Affiliation:
Naval Research Laboratory, Complex Systems Theory Branch, Washington, D.C. 20375-5000
E. Kaxiras
Affiliation:
Sachs/Freeman Associates, Inc., Landover, MD 20785
M.J. Mehl
Affiliation:
Naval Research Laboratory, Complex Systems Theory Branch, Washington, D.C. 20375-5000
Get access

Abstract

Energy barriers for ‘magic’ strains, large pure shear strains which transform a lattice into itself, are computed for aluminum and iridium, using the linearized-augmented-plane-wave method, and for silicon, using the plane wave pseudopotential approach. The barrier energies are found to be of the order of the thermal energy available at the melting temperature. Volume changes associated with the barriers are consistent with the fact that the metals decrease in density while silicon increases in density upon melting.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Boyer, L.L., Acta. Cryst. A45, FC29 (1989).Google Scholar
2. Waal, B.W. Van de, Acta. Cryst. A46, FC17 (1990).Google Scholar
3. Brillouin, L., Phys. Rev. 54, 916 (1938).Google Scholar
4. Born, M., J. Chem. Phys., 7, 591 (1939).Google Scholar
5. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954), p. 413.Google Scholar
6. Cochran, W., Ferroelectrics, 35, 3 (1981); W. Cochran, Phys. Rev. Lett., 3, 412 (1959); Adv. Phys. 9, 387 (1960); Adv. Phys. 10, 401 (1961).Google Scholar
7. Bussman-Holder, A., Bilz, H. and Benedek, G., Phys. Rev. B 39, 9214 (1989).CrossRefGoogle Scholar
8. Boyer, L.L., Ferroelectrics, 111, 63 (1990).Google Scholar
9. Andersen, O.K., Phys. Rev. B 12, 3060 (1975).Google Scholar
10. Wei, S.-H. and Krakauer, H., Phys. Rev. Lett. 55, 1200 (1985).CrossRefGoogle Scholar
11. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133(1965).Google Scholar
12. Hedin, L. and Lundqvist, B. I., J. Phys. C 4, 2064(1971).Google Scholar
13. Koelling, D.D. and B. Harmon, N., J. Phys. C 10, 2041(1975).Google Scholar
14. k-point meshes were generated by the scheme of Monkhorst, H.J. and Pack, J.D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
15. Pseudopotentials are from Bachelet, G.B., Homann, D.R. and Schluter, M., Phys. Rev. B26, 4199 (1982).Google Scholar
16. Ceperly, D.M. and Alder, B.J., Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar