Skip to main content Accessibility help
×
Home

Energetics of mer/fac isomers in metal tris(8-hydroxyquinoline) chelates: Implications on charge conduction in organic light-emitting devices

  • Kim F. Ferris (a1), Linda S. Sapochak (a1), Deanna Rodovsky (a1) and Paul E. Burrows (a1)

Abstract

Electronic structure calculations for the mer and fac-isomers of aluminum tris (8-hydroxyquinoline) (Alq3) and the methyl-substituted series, nMeq3Al (n = 3 - 7) are presented. From these data, we estimate their relative abundances in Alq3 thin films and the resultant trap state energies. Ab initio computations performed at the SCF level suggest a significantly higher stability (6 - 7.5 kcal/mol) of the mer-isomer over the facial form, whereas MP2 treatment of electron correlation effects lowers the difference to (4 - 4.5 kcal/mol). Substitution of the Al+3 metal ion with the larger ions Ga+3 and In+3 increases the energetic preference of the meridianal form by 2.7 kcal/mol and decreases it by 0.8 kcal/mol, respectively. Trap state energies calculated by previously proposed methodologies show little difference between mer and fac trap states. These results suggest that the existence of the facial isomer in thin films of metal trisquinolates is unlikely to significantly affect charge conduction.

Copyright

References

Hide All
1. Tang, C.W. and Van Slyke, S.A., Appl. Phys. Lett. 51, 913 (1987).
2. Curioni, A., Boero, M., Andreoni, W., Chem. Phys. Lett. 294, 263 (1998).
3. Kushto, G.P., Iizumi, Y., Kido, J., and Kafafi, Z.H., J. Phys. Chem. 104, 3670 (2000).
4. Utz, M., Chen, C., Martin, M., Papadimitrakopoulos, F., J. Am. Chem. Soc. 125, 1371 (2003).
5. Schmidt, M.W., Galdridge, K.K., Boatz, J.A., Elbert, S.T., M.S.Gordon, Jensen, J.J., Koseki, S., Matsunagea, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montogomery, J.A., J. Comput. Chem. 14, 1347 (1993).
6. Granovsky, A.A., www.http://classic.chem.msu.su/gran/gamess/index.html.
7. Ditchfield, R., Hehre, W.J., and Pople, J.A., J. Chem. Phys. 54, 724 (1971). W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257 (1972).M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S Gordon, D.J. DeFrees, J.A. Pople, J.Chem. Phys. 77, 3654 (1982).
8. Hariharan, P.C. and Pople, J.A., Theor. Chim. Acta 28, 213 (1973).
9. Stevens, W.J., Basch, H., Krauss, M., J. Chem. Phys. 81, 6026 (1984). W.J. Stevens, H. Basch, M. Drauss, P. Jasien, Can. J. Chem. 70, 612 (1992). T.R. Cundari, W.J. Stevens, J. Chem. Phys. 98, 5555 (1993).
10. Spartan 02 Version 1.0.2 Wavefunctions, Inc., Irvine, CA.
11. HyperChem, Version 6.03, Hypercube, Inc., Gainesville, FL.
12. Martin, R.L., Kress, J.D., Campbell, I.H., Smith, D.L., Phys. Rev. B 61, 15804 (2000).
13. Schmidbauer, H., Lattenbauer, J., Dallas, L., Muller, W.G., Kumberger, O., Z. Naturforsh, 46b, 901 (1991).
14. Addy, P., Evans, D., Sheppard, R., Inorg. Chim. Acta 127, L19 (1987).

Energetics of mer/fac isomers in metal tris(8-hydroxyquinoline) chelates: Implications on charge conduction in organic light-emitting devices

  • Kim F. Ferris (a1), Linda S. Sapochak (a1), Deanna Rodovsky (a1) and Paul E. Burrows (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed