Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T21:19:37.149Z Has data issue: false hasContentIssue false

Energetics and Structural Investigation of Double-Walled Carbon and Silicon Nanotubes

Published online by Cambridge University Press:  15 March 2011

Solange B. Fagan
Affiliation:
Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
Daniela S. Sartor
Affiliation:
Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
R. Mota
Affiliation:
Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
R. J. Baierle
Affiliation:
Departamento de Ciências Exatas, Centro Universitário Franciscano, 97010-032, Santa Maria, RS, Brazil
Antônio J. R. da Silva
Affiliation:
Instituto de Física, Universidade de São Paulo, CxP 66318, 05315-970, São Paulo, SP, Brazil
A. Fazzio
Affiliation:
Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil Instituto de Física, Universidade de São Paulo, CxP 66318, 05315-970, São Paulo, SP, Brazil
Get access

Abstract

Using two different approaches: Monte Carlo simulations with Tersoff empirical potential and first principles calculations, the energetics and the structural properties of double-walled carbon and silicon nanotubes are investigated. Through Tersoff potential, the changes on cohesive energies for the Si and C systems are determined for several outer tubules for a fixed inner tube. Adopting first principles calculations, based on density functional theory, the trends, in terms of the cohesive energies, are compared with the corresponding obtained results using Tersoff empirical potential. The structures, specially of the most stable double-walled nanotubes, are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature (London) 354, 56 (1991); J.W. Mintmire, B.I. Dunlop and C.T. White, Phys. Rev. Lett. 68, 631 (1992).Google Scholar
2. Charlier, J.-C., Vita, A. De, Blase, X. and Car, R., Science 275, 646 (1997).Google Scholar
3. Saito, R., Dresselhaus, G. and Dresselhaus, M.S., J. Appl. Phys. 73, 494 (1993).Google Scholar
4. Charlier, J.-C. and Michenaud, J.-P., Phys. Rev. Lett. 70, 1858 (1993).Google Scholar
5. Östling, D., Tománek, D. and Rosén, A., Phys. Rev. B 55, 13980 (1997); Y. K. Kwon and D. Tománek, Phys. Rev. B 58, R16001 (1998).Google Scholar
6. Fagan, S. B., Baierle, R.J., Mota, R., Silva, A.J.R. da and Fazzio, A., Phys. Rev B. 61, 9994 (2000).Google Scholar
7. Fagan, S. B., Paiva, G., Baierle, R.J., Mota, R., Silva, A.J.R. da and Fazzio, A., J. of Molec. Struct., – THEOCHEM 5391-3, 101–106 (2001).Google Scholar
8. Wang, Y.C., Scheerschmidt, K. and Gösele, U., Phys. Rev. B 61, 12864 (2000).Google Scholar
9. Tersoff, J., Phys. Rev. Lett. 56, 632 (1986); Phys. Rev. B 37, 6991 (1988).Google Scholar
10. Robertson, D.H., Brenner, D.W. and Mintmire, J.W., Phys. Rev. B 45, 12592 (1992).Google Scholar
11. Hamada, N., Sawada, S. and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
12. Hammersley, J.M. and Handscomb, D.C., Monte Carlo Methods, John Willey & Sons Inc., New York, 1979.Google Scholar
13. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1995).Google Scholar
14. Marsen, B. and Sattler, K., Phys. Rev. B 60, 11593 (1999); B. Li, P. Cao and D. Que, Phys. Rev. B 61, 1685 (2000); A.A. Shvartsburg and M.F. Jarrold, Phys. Rev. A 60, 235 (1999); J. Müller, B. Lu, A. A. Shvartsburg, S. Ogut, J.R. Chelikowsky, K.W.M. Siu, K.-M. Ho and G. Gautefor, Phys. Rev. Lett. 85, 1666 (2000).Google Scholar
15. Müller, J., Liu, B., Shvartsburg, A. A., Ogut, S.. Chelikowsky, J. R., Siu, K.W. M., Ho, K.-M and Gantefor, G., Phys. Rev. Lett. 85, 1666 (2000).Google Scholar