Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T13:50:23.345Z Has data issue: false hasContentIssue false

Energetic Neutral Atom Beam Lithography/Epitaxy for Nanoscale Device Fabrication

Published online by Cambridge University Press:  01 February 2011

Elshan A. Akhadov
Affiliation:
Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Alexander H. Mueller
Affiliation:
Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Mark A. Hoffbauer
Affiliation:
Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Get access

Abstract

Energetic neutral atom beam lithography/epitaxy (ENABLE) is a versatile technique recently developed for patterning nanoscale features into polymer substrates. ENABLE achieves the direct activation of surface chemical reactions by exposing substrates to a beam of energetic neutral atoms. Polymers that form volatile oxidation products may be anisotropically etched using a neutral beam of oxygen atoms at rates exceeding 100 nm/min, avoiding problems associated with charged species inherent to other etching techniques. We report on a top-down approach for producing high-aspect-ratio nanoscale structures in polymeric materials using ENABLE. Masking techniques suitable for ENABLE etching are discussed along with applications involving the rapid production of nanoscale features over large areas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hwang, G. S. and Giapis, K. P., J. Appl. Phys. 82, 566 (1997).Google Scholar
2 Ingram, S. G., J. Appl. Phys. 68, 500 (1990).Google Scholar
3 Arnold, J. C. and Sawin, H. H., J. Appl. Phys., 70, 5314 (1991).Google Scholar
4 Economou, D. J. and Alkire, R., J. Electrochem. Soc. 135, 941 (1988).Google Scholar
5 Gottscho, R. A., Jurgensen, C. W., and Vitkavage, D. J., J. Vac. Sci. Technol. B 10, 2133 (1992).Google Scholar
6 Samukawa, S., Appl. Phys. Lett. 64, 3398 (1994).Google Scholar
7 Fujiwara, N., Maruyama, T., and , Yoneda, Jpn. J. Appl. Phys., Part 1 35, 2450 (1996).Google Scholar
8 Hoffbauer, M. A., Cross, J., and Bermudez, V. M., Appl. Phys. Lett. 57, 2193(1990) and references therein.Google Scholar
9 Hulteen, J. C. and Duyne, R. P. Van, J. Vac. Sci. Technol. A 13, 1553 (1995).Google Scholar
10 Yapsir, Andrie S., J. Vac. Sci. Technol. A 10 (4), 792 (1992).Google Scholar