Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T10:21:11.229Z Has data issue: false hasContentIssue false

Enameling of Alumina Implant Materials with Bioglasses:Behavior of These Enamels in Simulated Biological Environments.

Published online by Cambridge University Press:  26 February 2011

D. Muster
Affiliation:
L.E.E.D. Biomatériaux, Stomatologie ot Chirurgir maxillo-faciale CHRU BP 426 67091 Strasbourg Cédex FRANCE
J. L. Crovisier
Affiliation:
Laboratoire de Cristallographie, Minérelogie ot Pétrngraphie 1, rue Slessig 67064 Strosbourg Cédex FRAIICE
J. M. Hamert
Affiliation:
Laboratoire de Cristallographie, Minérelogie ot Pétrngraphie 1, rue Slessig 67064 Strosbourg Cédex FRAIICE
Get access

Abstract

Four glasses were tested as enamel seals between osseous and mucous media on alumina implants. It was found that a perfect enamel adherence on the aluminous substrate is obtained at 1400° C. During enameling the surface of the implant is dissolved in the glass, which leads to the formation of aluminosilicate crystals in the implant/enamel interface. A rapid cooling from 200 to 1°C in water does not provoke fissuring of the enamel for the four glasses tested, which illustrates the good mechanical resistance of the implant/enamel bond. The preliminary in vitro results indicate that hydroxyapatite forms directly within the leached layer developed in plasma (except for KG.X glass).

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Muster, D. and Champy, M., Act. Odontostomatol. 121, 109124, (1978).Google Scholar
2. Muster, D., Stomatologie I (Ency cl. Med Chir., Paris, 1987), 22014 F10, pp. 132.Google Scholar
3. Folger, R.L., Kucheria, C.S., Welles, R.E. and Gardiner, G.E., in Biomaterials 84 Transactions edited by Anderson, J.M. (Soc. Biomat. 7, Washington, D.C., 1984), p. 352.Google Scholar
4. Pernot, F., Rogier, R., Zarzycki, J., Bonnel, F. and Baldet, P., Bull. Soc. Chim. Fr., 4, 519522 (1985).Google Scholar
5. Barth, E. and Hero, H., Biomat., 7, 273276 (1986).CrossRefGoogle Scholar
6. Ducheyne, P., Van Raemdonck, W. Heughebaert, J.C. and Heughe-baert, M., Biomat., 7, (1986).Google Scholar
7. Lacefield, W.R. and Hench, L.L., Biomat., 7, (1986).Google Scholar
8. Ravaglioli, A., Krajewski, A., Ponti, P., Valmori, R. and Contoli, S. J. of Phys. 47, 2, (St Cl), 769774 (1986)Google Scholar
9. Sheridan, R., Francq-Dufief, M.P. and Heuson-Stiennon, J.A., Biology of the Cell, 57, 10a (1986)Google Scholar
10. Griss, P., Werner, E., Heimke, G. and Buchinger, R., Arch. Orthop. Unfall-Chir. 90, 1527 (1977).Google Scholar
11. Griss, P., Werner, E., Heimke, G. and Raute-Kreinsen, U., Arch. Orthop. Traumat. Surg. 92, 199210 (1978).CrossRefGoogle Scholar
12. Appen, A.A., Silikattech. 5, 113114 (1954).Google Scholar
13. Gross, U.M. and Strunz, V., J. Biomed. Mat. Res. 14, 607618 (1980).Google Scholar
14. Carbonnel-Vadala, P., Thesis. Université d'Orléans. 116 p. (1982).Google Scholar
15. Ehret, G., Crovisier, J.L. and Eberhart, J.P., J. Non-Cryst. Solids 86, 7279 (1986).Google Scholar
16. Crovisier, J.L., Ehret, G. and Eberhart, J.P., Rivista della Staz. Sper. Vetro 5, 149154 (1984).Google Scholar
17. Wilson, J., Pigott, G.H., Schoen, F.J. and Hench, L.L., J. Biomed. Mat. Res., 15, 805817 (1981).Google Scholar