Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T06:00:47.855Z Has data issue: false hasContentIssue false

Emitter-Base Separation Techniques for Resonant Tunneling Light Emitting Transistors

Published online by Cambridge University Press:  21 February 2011

Jan Genoe
Affiliation:
Kapeldreef 75, B-3001 Leuven, Belgium.
C. Van Hoof
Affiliation:
Kapeldreef 75, B-3001 Leuven, Belgium.
G. Borghs Imec
Affiliation:
Kapeldreef 75, B-3001 Leuven, Belgium.
Get access

Abstract

The realisation of resonant tunneling transistors with a quantum-well base layer requires good Ohmic contacts on a two-dimensional electron gas. Both a good base-emitter separation and a good base-collector separation without the depletion of the base layer are essential requirements. The depletion of the base layer would prevent the injection of base current. Also the penetration of the contact metal needs to be restricted to prevent destruction of the two-dimensional electron gas layer. A 100 nm base-emitter separation can be obtained using a self-aligned base etching combined with the PdGe non-alloyed contact technology. A 10 nm wide quantum well spacer layer prevents the quantum-well consumption by the PdGe regrowth and allows the charging of the base layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Van Hoof, C., Genoe, J., Mertens, R., Borghs, G. and Goovaerts, E., Appl. Phys. Lett. 60, 77 (1992); L. Eaves, Proceedings of the 21st European Solid State Device Research Conference (ESSDERC 91), 661Google Scholar
2 Van Hoof, C., Genoe, J., Mertens, R. P., Goovaerts, E. and Borghs, G., Electron. Lett. 28, 123 (1992).Google Scholar
3 Van Hoof, C., Genoe, J., Raymond, S. and Borghs, G., Appl. Phys. Lett. 63, 2390 (1993).Google Scholar
4 Genoe, J., Van Hoof, C., Fobelets, K., Mertens, R. and Borghs, G., Appl. Phys. Lett. 61, 1051 (1992).Google Scholar
5 Marshall, E. D., Zhang, B., Wang, L. C., Jiao, P. F., Chen, W. X., Sawada, T., Lau, S. S., Kavanagh, K. I. and Kuech, T. F., . Appl. Phys. 62, 942 (1987).Google Scholar
6 Han, C. C., Wang, X. Z., Lau, S. S., Potemski, R. M., Tischler, M. A. and Kuech, T. F., Appl. Phys. Lett. 58,1617 (1991).Google Scholar
7 Van Hoof, C., Genoe, J., Van Hove, M., Jansen, P., Van Rossum, M. and Borghs, G., Electron. Lett. 26, 797 (1990).Google Scholar
8 Genoe, J., Van Hoof, C., Mertens, R. and Borghs, G., Proceedings of SPIE 94, Los Angeles, 1994.Google Scholar