Skip to main content Accessibility help

Ellipsometry Study on Nanoparticles Grown by Atomic Layer Deposition

  • Xueqi Zhou (a1), Ying Zhang (a1), Zhengqiong Dong (a2) (a3), Shiyuan Liu (a2) (a3), Chuanwei Zhang (a2), Bin Huang (a1), Kun Cao (a1), Bin Shan (a1) and Rong Chen (a2)...


Spectroscopic Ellipsometry (SE) was chosen to study thin film growth in atomic layer deposition (ALD). It was shown that Cauchy model had limitations in predicting the ultrathin film thickness at initial few deposition cycles, and the fitting results depend on wavelengths range greatly. Effective Medium Approximation (EMA) model is capable of predicting ultrathin film’s physical properties. Our experiments on Al2O3 growth give supporting evidence on the applicability of EMA model, where it is used to successfully explain the initial nucleation and island like growth. EMA model can be extended to be used for Palladium thin film, which can give reasonable thickness and void content.


Corresponding author

*Corresponding author:


Hide All
[1] George, S. M., Chemical Reviews 110, 111131 (2009).
[2] Ott, A. W., Klaus, J. W., Johnson, J. M., and George, S. M., Thin Solid Films 292, 135144 (1997).
[3] Puurunen, R. L., Journal of Applied Physics 97, 121301–52 (2005).
[4] Kim, H., Lee, H. and Maeng, W. J., Thin Solid Films 517, 25632580 (2009).
[5] Knez, M., Nielsch, K. and Niinistö, L., Advanced Materials 19, 34253438 (2007).
[6] Gonçalves, D. and Irene, E. A., Química Nova 25, 794800 (2002).
[7] Frank, M. M., Chabal, Y. J. and Wilk, G. D., Applied Physics Letters 82, 47584760 (2003).
[8] von Keudell, A and Jacob, W., Journal of Applied Physics 79, 10921098 (1996).
[9] L. A. S. B. E, Journal of Physics D: Applied Physics 42, 073001 (2009).
[10] Jiang, G., Pelcher, D., Kwon, D., Clerico, J., and Collins, G., MRS Online Proceedings Library 782, null-null (2003).
[11] Weber, M. J., Mackus, A. J. M., Verheijen, M. A., van der Marel, C., and Kessels, W. M. M., Chemistry of Materials 24, 29732977 (2012).
[12] Campbell, C. T., Surface Science Reports 27, 1111 (1997).
[13] Knaut, M., Junige, M., Albert, M., and Bartha, J. W., Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 30, 01A151-9 (2012).
[14] Aspnes, D. E., Thin Solid Films 89, 249262 (1982).
[15] Zhao, Z. W., Tay, B. K., Lau, S. P., and Xiao, C. Y., Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21, 906910 (2003).
[16] Shamala, K. S., Murthy, L. C. S. and Narasimha Rao, K., Materials Science and Engineering: B 106, 269274 (2004).
[17] Elam, J. W., Zinovev, A., Han, C. Y., Wang, H. H., Welp, U., Hryn, J. N., and Pellin, M. J., Thin Solid Films 515, 16641673 (2006).
[18] Mackus, A. J. M., Verheijen, M. A., Leick, N., Bol, A. A., and Kessels, W. M. M., Chemistry of Materials (2013).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed