Skip to main content Accessibility help
×
Home

Electrospun Poly(vinylidene fluoride)-based Carbon Nanofibers for Hydrogen Storage

  • H. J. Chung (a1), D. W. Lee (a1), S. M. Jo (a2), D. Y. Kim (a2) and W. S. Lee (a2)...

Abstract

Poly(vinylidene fluoride) (PVdF) fine fiber of 200–300 nm in diameter was prepared through the electrospinning process. Dehydrofluorination of PVdF-based fibers for making infusible fiber was carried out using DBU, and the infusible PVdF-based nanofibers were then carbonized at 900–1800°C. The structural properties and morphologies of the resulting carbon nanofibers were investigated using XRD, Raman IR, SEM, TEM, and surface area & pore analysis. The PVdF-based carbon nanofibers had rough surfaces composed of 20-to 30-nm granular carbons, indicating their high surface area in the range of 400–970 m2/g. They showed amorphous structures. In the case of the highly ehydrofluorinated PVdF fiber, the resulting carbon fiber had a smoother surface, with d002 = 0.34–0.36 nm, and a very low surface area of 16–33 m2/g. The hydrogen storage capacities of the above carbon nano-fibers were measured, using the gravimetric method, by magnetic suspension balance (MSB), at room temperature and at 100 bars. The storage data were obtained after the buoyancy correction. The PVdF-based microporous carbon nanofibers showed a hydrogen storage capacity of 0.04–0.4 wt%. The hydrogen storage capacity depended on the dehydrofluorination of the PVdF nanofiber precursor, and on the carbonization temperatures.

Copyright

References

Hide All
1. Dillon, A.C., Jones, K.M., Bekke-dahl, T.A., Kiang, H., Bethune, D.S., and Heben, M.J., Nature, 386, 377 (1997).
2. Liu, , Science, 286, 1127 (1999).
3. Zhu, H., Cao, A., Li, X., Xu, C., Mao, Z., Ruan, D., Liang, J., and Wu, D., Applied Surface Science, 178, 50 (2001).
4. Ye, Y., Ahn, C.C., Witham, C., Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A., and Smalley, R. E., Appl. Phys. Lett., 74(16), 2307 (1999).
5. Nijkamp, M.G., Raaymakers, J.E.M.J., Van Dillen, A. J., De Jong, K. P., Appl. Physd., A72, 619 (2001).
6. Chahine, R. and Bose, T. K., Int. Hydrogene Energy, 19, 161 (1994).
7. Yamashita, J., Shioya, M., Kikutani, T., and Hashimoto, T., Carbon, 39, 207 (2001).

Related content

Powered by UNSILO

Electrospun Poly(vinylidene fluoride)-based Carbon Nanofibers for Hydrogen Storage

  • H. J. Chung (a1), D. W. Lee (a1), S. M. Jo (a2), D. Y. Kim (a2) and W. S. Lee (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.