Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-07T08:27:31.681Z Has data issue: false hasContentIssue false

Electro-Polymerization in Porous Silicon Films

Published online by Cambridge University Press:  09 August 2011

R. K. Soni
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, San Juan-0093 1, PUERTO RICO
L. F. Fonseca
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, San Juan-0093 1, PUERTO RICO
O. Resto
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, San Juan-0093 1, PUERTO RICO
A. Guadalupe
Affiliation:
Department of Chemistry, University of Puerto Rico, Rio Piedras, San Juan-00931, PUERTO RICO
S. Z. Weisz
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, San Juan-0093 1, PUERTO RICO
Get access

Abstract

Luminescent porous silicon films were created by electrochemical anodization of n-type substrate under light illumination. Semi-transparent conducting polypyrrole films were deposited by electrochemical polymerization at a low current density. The SEM micrographs showed that the polymer film impregnates into the wide vertical pores of 1–5 µm and grows sideways suggesting strong current distribution on the walls. The AFM images of polymer surface reveal nanometer size polymer aggregates on the porous layer. The impregnation of the polymer film due to sideways growth provides a useful mean to fabricate stable contact for light emitting diodes from porous silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cullis, A.G., Canham, L.T., and Calcott, P.D.J., J. Appl. Phys. 82, 909 (1997).Google Scholar
2. Beale, M.I.J., Canham, L.T., and Cox, T.J., in Mat. Res. Soc. Symp. Proc. 283, (1993) p. 377.Google Scholar
3. Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 347 (1992).Google Scholar
4. Namavar, F., Muruska, H.P., and Kalkhoran, N.M., Appl. Phys. Lett., 60, 2514 (1992).Google Scholar
5. Moreno, J.D., Agullo-Rueda, F., Guerrero-Lemus, R., Palma, R.J Martin, Martinez-Duart, J.M., Marcos, M. L., and Gonzalez-Velasco, J., in Mat. Res. Soc. Symp Proc. 452, (1997) p. 479484. Google Scholar
6. Koshida, N., Koyama, H., Yamamoto, Y., and Callins, G.J., Appl. Phys. Lett. 63, 2655 (1993).Google Scholar
7. Wakefield, G., Dobson, P.J., Foo, Y.Y., Loni, A., Simons, A., and Hutchison, J.L., Semicond. Sci. Technol. 12, 1304 (1997).Google Scholar
8. Li, K., Diaz, D.C., He, Y, Campbell, J.C., and Tsai, C, Appl. Phys. Lett. 64, 2394 (1994).Google Scholar
9. Saunders, B.R., Fleming, R.J., and Murray, K.S., Chem. Mater, 7, 1082 (1995).Google Scholar