Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T13:41:19.467Z Has data issue: false hasContentIssue false

Electro-Optic Materials by Solid Source MOCVD

Published online by Cambridge University Press:  15 February 2011

R. Hiskes
Affiliation:
Hewlett-Packard Laboratories, 3500 Deer Creek Road, Palo Alto, CA 94303
S. A. Dicarolis
Affiliation:
Hewlett-Packard Laboratories, 3500 Deer Creek Road, Palo Alto, CA 94303
J. Fouquet
Affiliation:
Hewlett-Packard Laboratories, 3500 Deer Creek Road, Palo Alto, CA 94303
Z. Lu
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, CA 94305-2205
R. S. Feigelson
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, CA 94305-2205
R. K. Route
Affiliation:
Center for Materials Research, Stanford University, Stanford, CA 94305-4045
F. Leplingard
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
C. M. Foster
Affiliation:
Argonne National Laboratory, 9700 Cass Avenue, Argonne, IL 60439
Get access

Abstract

The solid source MOCVD technique1,2, employing a single powder vaporization source composed of mixed beta-diketonate metalorganic compounds, has been used to grow thin films of a variety of electro-optic materials, including lithium niobate, strontium barium niobate, and potassium niobate. Results for potassium niobate films are quite preliminary, but indicate that a volatile potassium organometallic source can be synthesized which is useful for growing potassium niobate by MOCVD. High quality single phase (001) oriented strontium barium niobate films have been deposited which exhibit waveguiding behavior. The most extensive work has been done on lithium niobate, which has been deposited epitaxially on a variety of substrates. Oriented z-axis (001) films have been grown on c-axis sapphire with and without a (111) oriented platinum base electrode and on a bulk grown lithium niobate substrate. Films grown directly on c-axis sapphire at 700 C exhibit x-ray rocking curve linewidths as low as.044 degrees, nearly perfect in-plane orientation as determined by x-ray phi scans, and peak-to-peak surface roughness less than 40 Å. Optical waveguiding has been demonstrated by a single prism coupling technique on similar films 1175 – 2000 Å thick grown at 500 C, with optical losses of approximately 2 db/cm at 632.8 nm measured over 3.5 cm long films. Polarization vs. electric field measurements on 1100 Å thick films grown on platinum show a hysteresis loop indicating ferroelectric behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hiskes, R., DiCarolis, S.A., Young, J.L., Laderman, S.S., Jacowitz, R.D., and Taber, R.C., Appl. Phys. Lett.,59 (5), 606 (1991).CrossRefGoogle Scholar
2. Hiskes, R., Dicarolis, S.A., Jacowitz, R.D., Lu, Z., Feigelson, R.S., Route, R.K., and Young, J.L., J. Cryst. Growth 128, 781 (1992).CrossRefGoogle Scholar
3. Cowher, M.E., Sedgwick, T.O., Landerman, J., J. Elect. Materials 3, 621 (1974).CrossRefGoogle Scholar
4. Zhang, K., Boyd, E.P., Kwak, B.S., Wright, A.C., and Erbil, A., Appl. Phys. Lett. 55, 1258 (1989).CrossRefGoogle Scholar
5. Malandrino, G., Richeson, D.S., Marks, T.J., DeGroot, D.C., Schindler, J.L., and Kanewurf, C.R., Appl. Phys. Lett. 58, 182 (1991).CrossRefGoogle Scholar
6. Duray, S.J., Buchholz, D.B., Song, S.N., Richeson, D.S., Ketterson, J.B., Marks, T.J., and Chang, R.P.H., Appl. Phys. Lett. 59, 1503 (1991).CrossRefGoogle Scholar
7. Zhao, J., Chem, C.S., Li, Y.Q., Noh, D.W., Norris, P.E., Zawadski, P., Kear, B., and Gallois, B., J. Cryst. Growth 107, 699 (1991).CrossRefGoogle Scholar
8. Lu, Z., Feigelson, R.S., Route, R.K., DiCarolis, S.A., Hiskes, R., and Jacowitz, R.D., J. Cryst. Growth 128, 788 (1992).CrossRefGoogle Scholar
9. Truman, K., Conductus, Inc., private communication.Google Scholar
10. Meng, G., Zhou, G., Schneider, R.L., Sarma, B.K., and Levy, M., Appl. Phys. Lett. 63, 1981 (1993).CrossRefGoogle Scholar
11. Strem Chemicals Inc., 7 Mulliken Way, Dexter Industrial Park, P.O. Box 108, Newburyport, MA 01950.Google Scholar
12. Houtman, C., Graves, D.B., and Jensen, K.J., J. Electrochem. Soc. 133, 961 (1986).CrossRefGoogle Scholar
13. Parsons, J.D., J. Cryst. Growth 116, 387 (1992).CrossRefGoogle Scholar
14. Carruthers, J.R. and Grasso, M., J. Electrochem. Soc. 117, 1427 (1970).CrossRefGoogle Scholar
15. Lu, Z., Feigelson, R.S., Routè, R.K., Hiskes, R. and DiCarolis, S.A., these proceedings.Google Scholar
16. Hammond, G.S., Nonhebel, D.C., and Wu, C-W. S., Inorg. Chem. 2, 73 (1963).CrossRefGoogle Scholar
17. Schwyn, S., Lehmann, H.W., and Widmer, R., J. Appl. Phys. 72, 1154 (1992).CrossRefGoogle Scholar
18. Fork, D. and Anderson, G.B., Appl. Phys. Lett. 63, 1029 (1993).CrossRefGoogle Scholar
19. Yamada, A., Tamada, H., and Saitoh, M., Appl. Phys. Lett. 61, 2848 (1992).CrossRefGoogle Scholar
20. Betts, R.A. and Pitt, C.W., Electron. Lett. 21, 960 (1985).CrossRefGoogle Scholar
21. Nashimoto, K. and Cima, M.J., Mat. Lett. 10 348 (1991).CrossRefGoogle Scholar
22. Curtis, B.J. and Brunner, H.R., Mat. Res. Bull. 10, 515 (1975).CrossRefGoogle Scholar
23. Weinberg, A.A., Gysling, H.J., Filo, A.J., and Blanton, T.N., Appl. Phys. Lett. 62, 946 (1993).CrossRefGoogle Scholar
24. Svaasand, L.O., Eriksrud, M., Nakhen, G., and Gramde, A.P., J. Cryst. Growth 22, 230 (1974).CrossRefGoogle Scholar
25. Rauber, A. in Current Topics in Materials Science, volume 1, edited by Kaldis, E. (1976) p. 481.Google Scholar
26. Radiant Technologies, Inc. 1009 Bradbury Drive SE, Albuquerque, NM 87106.Google Scholar