Skip to main content Accessibility help
×
Home

Electronically Stimulated Degradation of Crystalline Silicon Solar Cells

  • J. Schmidt (a1), K. Bothe (a1), D. Macdonald (a2), J. Adey (a3), R. Jones (a3) and D. W. Palmer (a3)...

Abstract

Carrier lifetime degradation in crystalline silicon solar cells under illumination with white light is a frequently observed phenomenon. Two main causes of such degradation effects have been identified in the past, both of them being electronically driven and both related to the most common acceptor element, boron, in silicon: (i) the dissociation of iron-boron pairs and (ii) the formation of recombination-active boron-oxygen complexes. While the first mechanism is particularly relevant in metal-contaminated solar-grade multicrystalline silicon materials, the latter process is important in monocrystalline Czochralski-grown silicon, rich in oxygen. This paper starts with a short review of the characteristic features of the two processes. We then briefly address the effect of iron-boron dissociation on solar cell parameters. Regarding the boron-oxygen-related degradation, the current status of the physical understanding of the defect formation process and the defect structure are presented. Finally, we discuss different strategies for effectively avoiding the degradation.

Copyright

References

Hide All
1 Macdonald, D. H., Geerlings, L. J., and Azzizi, A., J. Appl. Phys. 95, 1021 (2004).
2 Fischer, H. and Pschunder, W., Proc. 10th IEEE Photovolt. Spec. Conf. (IEEE, NY, 1973) p. 404.
3 Schmidt, J., Aberle, A.G., and Hezel, R., Proc. 26th IEEE Photovolt. Spec. Conf. (IEEE, NY, 1997) p. 13.
4 Glunz, S.W., Rein, S., Warta, W., Knobloch, J., and Wettling, W., Proc. 2nd World Conf. Photovolt. Solar Energy Conv. (EC, Ispra, 1998) p. 1343.
5 Bothe, K., Hezel, R. and Schmidt, J., Appl. Phys. Lett. 83, 1125 (2003).
6 Istratov, A.A., Hieslmair, H. and Weber, E.R., Appl. Phys. A 69, 13 (1999).
7 Kimerling, L.C. and Benton, J.L., Physica B 116, 297 (1983).
8 Macdonald, D. and Cuevas, A., Prog. Photovolt. 8, 363 (2000).
9 Schmidt, J., Prog. Photovolt. (2005) (in press).
10 Schmidt, J. and Cuevas, A., J. Appl. Phys. 86, 3175 (1999).
11 Kimerling, L.C., Asom, M.T., Benton, J.L., Drevinsky, P.J. and Caefer, C.E., Mat. Sci. For. 38-41, 141 (1989).
12 Rein, S. and Glunz, S., Appl. Phys. Lett. 82, 1054 (2003).
13 Bothe, K., Hezel, R. and Schmidt, J., Solid State Phenomena 95-96, 223 (2004).
14 Rein, S. et al., Proc. 17th European Photovolt. Solar Energy Conf. (WIP-ETA, Munich, 2001) p. 1555.
15 Schmidt, J. and Bothe, K., Phys. Rev. B 69, 024107 (2004).
16 Rein, S., Glunz, S.W. and Willeke, G., Proc. 3rd World Conf. Photovolt. Solar Energy Conv. (2003) p. 2899.
17 Schmidt, J., Bothe, K. and Hezel, R., Proc. 29th IEEE Photovolt. Spec. Conf. (IEEE, NY, 2002) p. 178.
18 Murin, L. I., Hallberg, T., Markevich, V. P. and JLindström, . L., Phys. Rev. Lett. 80, 93 (1998).
19 Ewels, C. P., PhD. Thesis, University of Exeter, UK (1997).
20 Adey, J., Jones, R., Palmer, D.W., Briddon, P.R. and öberg, S., Phys. Rev. Lett. 93, 055504 (2004).
21 Lee, Y.J., Boehm, J. von, Pesola, M. and Nieminen, R.M, Phys. Rev. Lett. 86, 3060 (2001).
22 Glunz, S., Rein, S., Knobloch, J., Wettling, W., and Abe, T., Prog. Photovolt. 7, 463 (1999).
23 Glunz, S., Rein, S., Lee, J., and Warta, W., J. Appl. Phys. 90, 2397 (2001).
24 Metz, A., Abe, T., and Hezel, R., Proc. 16th European Photovolt. Solar Energy Conf. (James & James, London, 2000) p. 1189.
25 Zhao, J., Wang, A., and Green, M., Proc. 16th European Photovolt. Solar Energy Conf. (James & James, London, 2000) p. 1100.
26 Zhao, J., Wang, A., and Green, M., Prog. Photovolt. 8, 549 (2000).
27 Glunz, S., Rein, S., Warta, W., Knobloch, J., and Wettling, W., Sol. Energ. Mat. Sol. Cells 65, 219 (2001).
28 Bothe, K., Schmidt, J., and Hezel, R., Proc. 29th IEEE Photovolt. Spec. Conf. (IEEE, New York, 2002), p. 194.
29 Nagel, H., Merkle, A., Metz, A., and Hezel, R., Proc. 16th European Photovolt. Solar Energy Conf. (James & James, pLondon, 2000) p. 1197.
30 Lee, J., Peters, S., Rein, S., and, Glunz, S., Prog. Photovolt. 9, 417 (2001).
31 Schmidt, J. and Cuevas, A., Proc. 16th European Photovolt. Solar Energy Conf. (James & James, London, 2000) p. 1193.
32 Münzer, K., Holdermann, K., Schlosser, R., Sterk, S., IEEE Trans. Electron Dev. 46, 2055 (1999).
33 Glunz, S., Dicker, J., Lee, J., Preu, R., Rein, S., Schneiderlöchner, E., Sölter, J., Warta, W., and Willeke, G., Proc. 17th European Photovolt. Solar Energy Conf. (WIP-ETA, Munich, 2001) p. 1287.

Electronically Stimulated Degradation of Crystalline Silicon Solar Cells

  • J. Schmidt (a1), K. Bothe (a1), D. Macdonald (a2), J. Adey (a3), R. Jones (a3) and D. W. Palmer (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed