Skip to main content Accessibility help
×
Home

Electronic Structure of CsBi4Te6

  • P. Larson (a1) (a2), S.D. Mahanti (a1) (a2), D-Y Chung (a3) (a2) and M.G. Kanatzidis (a3) (a2)

Abstract

Recently, CsBi4Te6 has been reported as a high-performance thermoelectric material for low temperature applications with a higher thermoelectric figure of merit (ZT ∼ 0.8 at 225 Kelvin) than conventional Bi2-x Sb z Te3-y Se y alloys at the same temperature. First-principle electronic structure calculations within density functional theory performed on this material give an indirect narrow-gap semiconductor. Dispersions of energy bands along different directions in k-space display large anisotropy and multiple conduction band minima close in energy, characteristics of a good thermoelectric material.

Copyright

References

Hide All
[1] Thermoelectric Materials- The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications. edited by Tritt, T.M., Kanatzidis, M.G., Mahan, G.D., and Lyon, H.B. Jr, MRS Symposia Proceedings No. 545 (Materials Research Society, Pittsburgh, 1999);
DiSalvo, F.J., Science 285, 703 (1999);
Tritt, T.M., Science 283, 804 (1999).
[2] Chung, D-Y, Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., Kanatzidis, M.G., Science 287, 1024 (2000);
Brazis, P., Rocci, M., Chung, D-Y, Kanatzidis, M.G., Kannewurf, C.R.. Thermoelectric Materials-The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by Tritt, T.M., Kanatzidis, M.G., Mahan, G.D., and Lyon, H.B. Jr, MRS Symposia Proceedings No. 545, 75 (Materials Research Society, Pittsburgh, 1999);
Kanatzidis, M. G., Chung, D-Y, Iordanidis, L., Choi, K-S, Brazis, P., Rocci, M., Hogan, T., Kannewurf, C.R., Thermoelectric Materials-The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by Tritt, T.M., Kanatzidis, M.G., Mahan, G.D., and Lyon, H.B. Jr, MRS Symposia Proceedings No. 545, 233 (Materials Research Society, Pittsburgh, 1999).
[3] Larson, P., Mahanti, S.D., Kanatzidis, M.G.. Phys. Rev. B 61, 8162 (2000)
[4] Mishra, S.K., Satpathy, S., Jepsen, O., J. Phys.: Condens. Matter 91, 461 (1997).
[5] Singh, D., Planewaves, Pseudopotentials, and the LAPWMethod (Kluwer Academic, Boston, 1994).
[6] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);
Kohn, W. and Sham, L., Phys. Rev. 140, A1133 (1965).
[7] Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).
[8] Blaha, P., Schwarz, K., and Luitz, J., WIEN97 (Vienna University of Technology, Vienna, 1997).
[9] Koelling, D.D. and Harmon, B., J. Phys. C 10, 3107 (1977); P. Novak (unpublished).
[10] Hicks, L.D., Hárman, T.C., and Dresselhaus, M.S., Appl. Phys. Lett. 63, 3230 (1993);
Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B 47, 16631 (1993);
Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B, 12727 (1993).
[11] Larson, P., Mahanti, S.D., Sportouch, S., and Kanatzidis, M.G., Phys. Rev. B 59, 15660 (1999).

Electronic Structure of CsBi4Te6

  • P. Larson (a1) (a2), S.D. Mahanti (a1) (a2), D-Y Chung (a3) (a2) and M.G. Kanatzidis (a3) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed