Skip to main content Accessibility help
×
Home

Electronic structure near the band gap of heavily nitrogen doped GaAs and GaP

  • Yong Zhang (a1), B. Fluegel (a2), M. Hanna (a2), A. Duda (a2) and A. Mascarenhas (a2)...

Abstract

Isoelectronic impurity nitrogen atoms have been found to generate a series of localized states in GaP and GaAs. These states can be either bound (within the band gap) or resonant (above the band gap) when in the dilute doping limit (roughly < 1019 cm−3 for GaP and < 1018 cm−3 for GaAs). With increasing nitrogen doping level, a shift of the absorption edge from the binary band gap has been observed for the so-called GaPN or GaAsN alloy. We discuss the similarity and dissimilarity between the two systems in the following aspects: (1) How does the nitrogen doping perturb the host band structure? (2) How do the nitrogen bound states evolve with increasing nitrogen doping level? (3) What are the dominant contributors to the band edge absorption? And (4) does a universal model exist for GaPN and GaAsN? Other issues that will be discussed are: how does one define the band gap for these materials, and what is the relevance of various theoretical band structure calculations to the experimentally measured parameters.

Copyright

References

Hide All
1. Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl. Phys. 31, L853 (1992).
2. Baillargeon, J. N., Cheng, K. Y., Hofler, G. E., Pearah, P. J., and Hsieh, K. C., Appl. Phys. Lett. 60, 2540 (1992).
3. Zhang, Y. and Ge, W.-K., J. Lumin. 85, 247 (2000).
4. Mascarenhas, A. and Zhang, Y., Current Opinions in Solid State and Material Science 5, 253 (2001).
5. Thomas, D. G., Hopfield, J. J., and Frosch, C. J., Phys. Rev. Lett. 15, 857 (1965).
6. Wolford, D. J., Bradley, J. A., Fry, K., Thompson, J., and King, H. E., In Inst. Phys. Conf. Ser. No. 65, ed. Stillman, G. E. (The Institute of Physics, Bristol, 1983), p. 477
7. Scheabe, R., Seifert, W., Bugge, F., Bindemann, R., Agekyan, V. F. and Pogarev, S. V., Solid State Commun. 55, 167 (1985); X. Liu, M.-E. Pistol, L. Samuelson, S. Schwetlick and W. Seifert, Appl. Phys. Lett. 56, 1451 (1990).
8. Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M. and Kurtz, S. R., Phys. Rev. Lett. 82, 1221 (1999).
9. Shan, W., Walukiewicz, W., Yu, K. M., Wu, J., Ager, J. W. III, Haller, E. E., Xin, H. P., and Tu, C. W., Appl. Phys. Lett. 76, 3251 (2000).
10. Jones, E. D., Modline, N. A., Allerman, A. A., Kurtz, S. R., Wright, A. F., Tozer, S. T., and Wei, X., Phys. Rev. B 60, 4430 (1999).
11. Mattila, T., Wei, S.-H., and Zunger, A., Phys. Rev. B 60, R11245 (1999).
12. Kent, P. R. C. and Zunger, A., Phys. Rev. Lett. 86, 2613 (2001).
13. Kent, P. R. C. and Zunger, A., Phys. Rev. B 64, 115208 (2001).
14. Al-Yacoub, A. and Bellaiche, L., Phys. Rev. B 62, 10847 (2000).
15. Zhang, Y., Mascarenhas, A., Xin, H. P., and Tu, C. W., Phys. Rev. B 61, 7479 (2000).
16. Zhang, Y., Fluegel, B., Mascarenhas, A., Xin, H. P., and Tu, C. W., Phys. Rev. B 62, 4493 (2000).
17. Thomas, D. G. and Hopfield, J. J., Phys. Rev. 150, 680 (1965).
18. Hopfield, J. J., Dean, P. J., and Thomas, D. G., Phys. Rev. 158, 748 (1966).
19. Yaguchi, H., Miyoshi, S., Biwa, G., Kibune, M., Onabe, K., Shiraki, Y. and Ito, R., J. Cryst. Growth 170, 353 (1997).
20. Zhang, Y., Mascarenhas, A., Geisz, J. F., Xin, H. P., and Tu, C. W., Phys. Rev. B 63, 85205 (2001).
21. Zhang, Y., Francoeur, S., Mascarenhas, A., Xin, H. P., and Tu, C. W., Proc. ICNS-4, Phys. Stat. Sol. (b) 228, 287 (2001).
22. Zhang, Y., Mascarenhas, A., Xin, H. P., and Tu, C. W., Phys. Rev. B 63, R161303 (2001).
23. Uesugi, K., Suemune, I., Hasegawa, T., Akutagawa, T., and Nakamura, T., Appl. Phys. Lett. 76, 1285 (2000).
24. Perkins, J. D., Mascarenhas, A., Zhang, Y., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 3312 (1999).
25. Klar, P. J., Güning, H., Heimbrodt, W., Koch, J., Höhnsdorf, F., Stolz, W., Vicente, P. M. A., and Camassel, J., Appl. Phys. Lett. 76, 3439 (2000).
26. Shan, W., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M. and Kurtz, S. R., Phys. Rev. B 62, 4211 (2000).
27. Shan, W., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., Kurtz, S. R., Xin, H. P., and Tu, C. W., phys. stat. sol (b) 223, 75 (20001).
28. Wei, S.-H and Zunger, A., Phys. Rev. Lett. 76, 664 (1996).
29. Wang, L.-W., Appl. Phys. Lett. 78, 1565 (2001).
30. Bellaiche, L. L., Wei, S.-H., and Zunger, A., Appl. Phys. Lett. 70, 3558 (1997).
31. Zhang, Y., Mascarenhas, A., and Wang, L.-W., Phys. Rev. B 63, R201312 (2001).
32. Bellaiche, L. L., Wei, S.-H., and Zunger, A., Phys. Rev. B 54, 17568 (1996).
33. Lightowlers, E. C., North, J. C., and Lorimor, O. G., J. Appl. Phys. 45, 2191 (1974).
34. Sturge, M. D., Cohen, E., and Rodgers, K. F., Phys. Rev. B 15, 3169 (1977).
35. Fehrenbach, G. W., Schafer, W., Treusch, J., and Ulbrich, R. G., Phys. Rev. Lett. 49, 1281 (1982).
36. Bellaiche, L., Modline, N. A., and Jones, E. D., Phys. Rev. B 62, 15311 (2000).

Related content

Powered by UNSILO

Electronic structure near the band gap of heavily nitrogen doped GaAs and GaP

  • Yong Zhang (a1), B. Fluegel (a2), M. Hanna (a2), A. Duda (a2) and A. Mascarenhas (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.