Skip to main content Accessibility help
×
Home

Electronic structure calculations of δ-Pu based alloys

  • Alex Landa (a1), Per Söderlind (a1) and Andrei Ruban (a2)

Abstract

First-principles methods are employed to study the ground-state properties of δ-Pu-based alloys. The calculations show that an alloy component larger than δ-Pu has a stabilizing effect. Detailed calculations have been performed for the δ-Pu1−cAmc system. Calculated density of Pu-Am alloys agrees well with the experimental data. The paramagnetic → antiferromagnetic transition temperature (Tc ) of δ-Pu100−cAmc alloys is calculated by the Monte-Carlo technique. By introducing Am into the system, one could lower Tc from 548 K (pure Pu) to 372 K (Pu70Am30). We also found that, contrary to pure Pu where this transition destabilizes δ-phase, Pu3Am compound remains stable in the antiferromagnetic phase that correlates with the recent discovery of the Curie-Weiss behavior of δ-Pu100−cAmc alloys at c ≥ 24 at. %.

Copyright

References

Hide All
1. Johansson, B., Phys. Rev. B11, 2740 (1975).
2. Söderlind, P., Europhys. Lett. 55, 525 (2001).
3. Söderlind, P., Landa, A., and Sadigh, B., Phys. Rev. B66, 205109 (2002).
4. Landa, A. and Söderlind, P., J. Alloys Comp. 354, 99 (2003).
5. Landa, A. and Söderlind, P., J. Phys.: Condens. Matter 15, L371 (2003).
6. Roberts, G., Pasturel, A., and Siberchicot, B., Phys. Rev. B68, 075109 (2003).
7. Dormeval, M., “Electronic structure of Pu-Ce(-Ga) and Pu-Am(-Ga) alloys stabilized in the δ-phase”. PhD Thesis, (University de Bourgogne, Dijon, France, 2001).
8. Abrikosov, I. A. and Skriver, H. L., Phys. Rev. B47, 16532 (1993).
9. Ruban, A. V. and Skriver, H. L., Comput. Mater. Sci. 15, 119 (1999).
10. Wills, J. M. and Cooper, B. R., Phys. Rev. B36, 3809 (1987);
Price, D. L. and Cooper, B. R., Phys. Rev. B39, 4945 (1989).
11. Vitos, L., Johansson, B., Kollar, J., and Skriver, H. L., Phys. Rev. A61, 052511 (2000); Phys. Rev. B62, 10046 (2000).
12. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M.R., and Singh, D. J., Phys. Rev. B46, 6671 (1992).
13. Györffy, B. L., Pindor, A. L., Stocks, G. M., Staunton, G. M., and Winter, H., J. Phys.: Met. Phys. F15, 1337 (1985).
14. Johnson, D. D., Nicholson, D. M., Pinski, F. J., Györffy, B. L., and Stocks, G. M., Phys. Rev. Lett. 56, 2088 (1986); Phys. Rev. B41, 9701 (1990).
15. Ellinger, F. H., Johnson, K.A., and Struebing, V. O., J. Nucl. Mat. 20, 83 (1966).
16. Söderlind, P., Eriksson, O., Johansson, B., Wills, J. M., and Boring, A. M., Nature 374, 524 (1995);
Söderlind, P., Adv. Phys. 47, 959 (1998).

Related content

Powered by UNSILO

Electronic structure calculations of δ-Pu based alloys

  • Alex Landa (a1), Per Söderlind (a1) and Andrei Ruban (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.