Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-19T05:11:06.719Z Has data issue: false hasContentIssue false

Electronic Structure and Bonding at Interfaces Between cvd Diamond and Silicon

Published online by Cambridge University Press:  21 February 2011

David A. Muller
Affiliation:
Physics Dept., Cornell University, Ithaca, N.Y., U.S.A., 14853
Yujiun Tzou
Affiliation:
Dept. of Mat. Sci. and Eng., Cornell University, Ithaca, N.Y., U.S.A., 14853
Rishi Raj
Affiliation:
Dept. of Mat. Sci. and Eng., Cornell University, Ithaca, N.Y., U.S.A., 14853
John Silcox
Affiliation:
School of App. and Eng. Physics, Cornell University, Ithaca, N.Y., U.S.A., 14853
Get access

Abstract

The interfacial structure of CVD diamond grown on silicon was studied using spatially resolved electron energy loss spectroscopy (EELS) in a UHV STEM with a subnanometer probe size. Both the plasmon and core excitations in the bulk appear to be localized on this scale. Spatial maps of the different bonding configurations of carbon were obtained by forming images from transmitted electrons that had undergone energy losses characteristic of threefold and fourfold coordinated carbon. Films grown on both prescratched silicon and intermediate amorphous carbon layers were examined. In the latter case, diamond nucleation on a narrow sp2 a-C occurred. For diamond grown directly on silicon, at some regions of the interface, threefold coordinated defect states smaller than 1 nm are observed on the diamond side of the interface while at other regions along the interface the presence of an intermediate 2nm thick SiC layer preserves the fourfold coordination of the carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davis, R., Sitar, Z., Williams, B.E., Kong, H.S., Kim, H.J., Palmour, J.W., Edmond, J.A., Ryu, J., Glass, J.T. and Carter, C.H. Jr., Mat.Sci.and Eng., B1 77104 (1988)Google Scholar
2. Matsumoto, S., Sato, Y., Kamo, M. and Setaka, N., Jpn.J.Appl. Phys. 21, L183185 (1982)Google Scholar
3. Angus, J.C. and Hayman, C.C., Science, 241 913921 (1988)Google Scholar
4. Jiang, X., Klages, C.P., Zachai, R., Hartweg, M. and Fusser, H.J. Appl. Phys. Lett. 62, 34383440 (1993)Google Scholar
5. Stoner, B.R., Ma, G-H. M., Wolter, S.D. and Glass, J.T., Phys. Rev., B45 1106711084 (1992)Google Scholar
6. Wolter, S.D., Stoner, B.R., Glass, J.T., Ellis, P.J., Buhaendo, D.S., Jenkins, C.E. and Southworth, P., Appl. Phys. Lett. 62, 12151217 (1993)Google Scholar
7. Williams, B.E., Glass, J.T., J. Mater.Res., 4, 373384 (1988).Google Scholar
8. Pehrsson, P.E., Glesener, J., Morrish, A., Thin Solid Films, 212, 8190 (1992)Google Scholar
9. Tzou, Y., Bruley, J., Ernst, F., Ruhle, M. and Raj, R., submitted to J.Mat.Res. (1993)Google Scholar
10. Lambrecht, W.R.L., Lee, C.H., Segall, B., Angus, J.C., Li, Z., Sunkara, M., Nature 364, 607610 (1993).Google Scholar
11. Li, Z., Wang, L., Suzuki, T., Argotia, A, Pirouz, P., Angus, J.C., J.App.Phys 73, 711715 (1993).Google Scholar
12. Crewe, A.V., Wall, J., Langmore, J., Science 168 13381340 (1970)Google Scholar
13. Leapman, R.D. and Hunt, J.A., in ‘Microscopy: The Key Research Tool’ eds. Lyman, C. E., Peachey, L.D., and Fisher, M.J., E.M.S.A., , Woods Hole, Ma., 39–49 (1992)Google Scholar
14. Tomboulian, D.H., and Bedo, D.E., Phys. Rev. 104 590597 (1956)Google Scholar
15. Colliex, C. and Jouffrey, B., Phil. Mag. 25 491511 (1972)Google Scholar
16. Egerton, R.F., “EELS in the Electron Microscope”, Plenum, New York (1986)Google Scholar
17. Egerton, R.F., and Whelan, M.J., J.Elect.Spect. 3 232236 (1974)Google Scholar
18. Berger, S.D., McKenzie, D.R. and Martin, P.J., Phil.Mag. Letters 6 285290 (1988)Google Scholar
19. Leapman, R.D., Fejes, P.L., and Silcox, J., Phys.Rev., B28 23612373 (1983)Google Scholar
20. Vvedensky, D.D., in ‘Topics in Applied Physics: Unoccupied Electronic States”, eds Fuggle, J.C. and Inglesfield, J.E. 69, Springer Verlag (New York) 152 (1992).Google Scholar
21. Silcox, J., Xu, P. and Loane, R.F., Ultramicroscopy, 47 173186 (1992)Google Scholar
22. Kirkland, E.J., Ultramicroscopy, 32 349364 (1990)Google Scholar
23. Pennycook, S.J., and Boatner, L.A., Nature 336 565567 (1988)Google Scholar
24. Muller, D.A., Tzou, Y., Raj, R., Silcox, J., to Appear in Nature (1993)Google Scholar
25. McKenzie, D. R., Bruley, J. and Smith, G.B., Appl. Phys. Lett. 53, 22842286 (1988).Google Scholar
26. Batson, P.E., Inst. Phys. Conf. Ser. No 177: Section 2, Paper presented at Micros. Semicond. Mater. Conf., Oxford, 55–62 (1991)Google Scholar
27. Bruley, J., Cuomo, J.J., Guanieri, R.C., Whitehair, S.J., M.R.S., Extended Abstracts EA–19 99100 (1989).Google Scholar
28. Fallon, P.J., Brown, L.M., Diamond and Related Materials, 2 10041011 (1994).Google Scholar