Skip to main content Accessibility help

Electronic States of Nanocrystalline Carbon

  • G. P. Lopinski (a1), V. I. Merkulov (a1) and J. S. Lannin (a1)


Electron energy loss spectroscopy (EELS) has been used to investigate the electronic states of isolated, nanocrystalline carbon particles. Small carbon nanocrys-tals were prepared via sputter deposition onto SiO2 substrates, followed by annealing to 700C. The structure and size distribution of the particles have been characterized by Raman scattering, Auger electron spectroscopy and electron microscopy. EELS observations indicate that a semimetal to semiconductor transition occurs for particles smaller than lnm. In addition, hydrogen adsorption is found to significantly affect the electronic states of these particles, indicating that both finite size and dangling bond effects modify the properties of small carbon nanocrystallites.



Hide All
[1] Robertson, J., Adv. Phys. 35, 317 (1986).
[2] Robertson, J. and O'Reilly, E.P., Phys. Rev. B35, 2946 (1987).
[3] Stephan, U., Frauenheim, Th., Blaudeck, P., and Jungnickel, G., Phys. Rev. 49, 1489 (1994).
[4] Nakhimovsky, I., Lamotte, M., and Joussot-Dubien, J., Handbook of Low Temperature Electronic Spectra of Polycyclic Aromatic Hydrocarbons, Elsevier, Amsterdam, 1989.
[5] Leach, S. in Polycyclic Aromatic Hydrocarbons and Astrophysics, edited by Leger, A. et al. , Reidel, Dordrecht, 1987.
[6] Connell, G.A.N., Nemanich, R.J., and Tsai, C.C., Appl. Phys. Lett. 36, 31 (1980).
[7] Bacsa, W.S. and Lannin, J.S., Appl. Phys. Lett. 61, 2116 (1992).
[8] Nemanich, R.J. and Solin, S.A., Phys. Rev. B20, 392 (1979).
[9] Li, F. and Lannin, J.S., Appl. Phys. Lett. 61, 2116 (1992).
[10] Merkulov, V.I., Lannin, J.S. and Cowley, J.M., in this volume.
[11] Cowley, J.M., Ultramicroscopy 49, 4 (1993).
[12] Cowley, J.M., Merkulov, V.I. and Lannin, J.S., Ultramicroscopy, in press.
[13] Ibach, H.L. and Mills, D.L., Electron Energy Loss Spectroscopy and Surface Vibrations, Academic Press, New York, 1982.
[14] Froitzheim, H., Ibach, H., and Mills, D.L., Phys. Rev. B11, 4980 (1975).
[15] Lopinski, G.P., Fox, J.R., Lannin, J.S., Flack, F.S., and Samarth, N., Surf. Sci. B355, 355 (1996).
[16] Hagemmann, H.J., Gudat, W., and Kunz, C., J. Opt. Soc. Amer. 65, 742 (1975).
[17] Palmer, R.E., Annett, J.F., and Willis, R.F., Phys. Rev. Lett. 58, 2490 (1987).
[18] Lopinski, G.P. and Lannin, J.S., Appl. Phys. Lett., in press.
[19] Leger, A. in Experiments on Cosmic Dust Analogues, edited by Bussoletti, E. et al. , Kluwer, Dordrecht, 1988.
[20] Puget, J.L. and Leger, A., Ann. Rev. Astron. Astrophys. 27, 161 (1989).
[21] Seigren, K. in Interstellar Dust, edited by Allamondola, and Tielens, , Kluwer, Dordrecht, 1988.
[22] Duley, W.W. and Williams, D.A., Mon. Not. Royal Astron. Soc. 247, 647 (1990).
[23] Duley, W.W., Astron. Journal 445, 240 (1995).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed