Skip to main content Accessibility help

Electronic States in Magnetic Quantum Wells

  • J. E. Ortega (a1), F. J. Himpsel (a1), G. J. Mankey (a2) and R. F. Willis (a2)


We have searched for the electronic states that mediate oscillatory magnetic coupling in superlattices, and have found strong evidence that these are quantum well states, which are created by quantizing the momentum of s,p-band states perpendicular to the interfaces. The quantum well picture also explains how quantum well states in noble metals become spin-polarized, due to a spin-dependent electron reflectivity at the interface with the ferromagnet. The resulting implications for magnetoresistance are discussed.



Hide All
1. Baibich, M. N., Broto, J. M., Fett, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A. and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).
2. Binasch, G., Grünberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. B 39, 4828 (1989).
3. Parkin, S. S. P., More, N., and Roche, K. P., Phys. Rev. Lett. 64, 2304 (1990);
Parkin, S. S. P., Bhadra, R., and Roche, K. P., Phys. Rev. Lett. 66, 2152 (1991).
4. Parkin, S. S. P., Appl. Phys. Lett 61, 1358 (1992) and to be published.
5. Dieny, B., Humbert, P., Speriosu, V. S., Metin, S., Gurney, B.A., Baumgart, P., and Lcfakis, H., Phys. Rev. B 45, 806 (1992).
6. For an overview see: Chapter “Recording Heads” by Jones, R.E. and Mee, C.D., in “Magnetic Recording: Volume 1: Technology”, ed. by Denis Mee, C. and Daniel, E.D., McGraw Hill 1987, p. 244.
7. Qiu, Z. Q., Pearson, J., and Bader, S. D., Phys. Rev. B 46, 8659 (1992).
8. Johnson, M. T., Purcell, S. T., McGee, N. W. E., Coehoorn, R., aan de Stegge, J., and Hoving, V., Phys. Rev. Lett. 68, 2688 (1992);
see also dc Miguel, J. J., Cebollada, A., Gallego, J. M., Miranda, R., Schneider, C. M., Schuster, P., and Kirschner, J., J. Magn. Magn. Mater. 93, 1 (1991);
Petroff, F., Barthélé, A., Mosca, D. H., Lottis, D. K., Fert, A., Schroeder, P. A., Pratt, W. P. Jr, and Loloee, R., Phys. Rev. B 44, 5355 (1991);
Bennett, W. R., Schwarzacher, W., and Egelhoff, W. F., Phys. Rev. Lett. 65, 3169 (1990).
9. Ortega, J. E. and Himpsel, F. J., Phys. Rev. Lett. 69, 844 (1992); see also
Himpsel, F. J., Phys. Rev. B 44, 5966 (1991).
10. Ortega, J. E., Himpsel, F. J., Mankey, G. J., and Willis, R. F., Phys. Rev. B 47, 1540 (1993) and J. Appl. Phys. 73, May 15 (1993).
11. Bastard, G., Wave Mechanics Applied to. Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, France, 1988), Chap. III.n
12. See, e.g. Bruno, P. and Chappert, C., Phys. Rev. Lett. 67, 1602 (1991), and
Bruno, P. and Chappert, C., Phys. Rev. Lett. 67, 2592 (1991).
13. Edwards, D.M., Mathon, J., Muniz, R.B., and Phan, M.S., Phys. Rev. Lett. 67, 493 (1991) and J. Phys. Condens. Matter 3, 4941 (1991);
Stiles, M.D., to be published.
14. Unguris, J., Celotta, R. J., and Pierce, D. T., J. Appl. Phys., in press; Z. Celiński, B. Heinrich, and J. F. Cochran, J. Appl. Phys., in press.
15. Parkin, S. S. P., Phys. Rev. Lett. 67, 3598 (1991).
16. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B., and Sowers, H., Phys. Rev. Lett. 57, 2442 (1986);
Unguris, J., Celotta, R. J., and Pierce, D. T., Phys. Rev. Lett. 67, 140 (1991);
Unguris, J., Celotta, R. J., and Pierce, D. T., Phys. Rev. Lett. 69, 1125 (1992);
Grünberg, P., Demokritov, S., Fuss, A., Schreiber, R., Wolf, J.A., and Purcell, S.T., J. Magn. Magn. Mat. 104–107, 1734 (1992).
17. Koehler, W., Moon, R. M., Trego, A. L., and Mackintosh, A. R., Phys. Rev. Lett. 151, 405 (1966);
Fawcett, E., Rev. of Mod. Phys., 60, 209 (1988).
18. The band calculation results arc from M. D. Stiles, private communication.
19. In order to calculate the quantum well state energies with the formulae in Ref. 10 we used an empirical band structure, Matched to the Fermi surface and to our inverse photoemission value of 1.7eV for the H'25 point of Cr. For the phase we used the phase shift from Ag/Fe (100) in Ref. 10, which, strictly speaking, applies to states of a different symmetry. Therefore, the absolute positions of the calculated quantum well states arc unreliable, but their spacing is insensitive to the phase.
20. Barthélé, A. and Fcrt, A., Phys. Rev. b 43, 13124 (1991);
Hood, R. Q. and Falicov, L. M., Phys. Rev. B 46, 8287 (1992).
21. Pratt, W. P. Jr, Lee, S.-F., Slaughter, J. M., Loloec, R., Schroeder, P. A., and Bass, J., Phys. Rev. Lett. 66, 3060 (1991);
Lee, S. F., Pratt, W. P. Jr, Loloee, R., Schroeder, P. A., and Bass, J., Phys. Rev. B 46, 548 (1991);
Pratt, W.P. Jr, Lee, S.-F., Holody, P., Yang, Q., Loloee, R., Bass, J., and Schroeder, P.A., to be published.
22. Pappas, D.P., Kämper, K.-P., Miller, B.P., Hopster, H., Fowler, D.E., Brundle, C.R., Luntz, A.C., and Shen, Z.-X., Phys. Rev. Lett. 66, 504 (1991);
Siegmann, H.C., J. Phys. Condens. Matter 4, 8395 (1992).
23. Santoni, A. and Himpsel, F. J., Phys. Rev. B 43, 1305 (1991).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed