Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T17:29:11.361Z Has data issue: false hasContentIssue false

Electronic Phase Transitions in F-electron Metals at High Pressures: Synchrotron X-ray Spectroscopic Studies on GD to 100 GPa

Published online by Cambridge University Press:  01 February 2011

Choong-Shik Yoo
Affiliation:
csyoo@wsu.edu, Washington State University, Department of Chemistry, Department of Chemistry and, Institute for Shock Physics, Pullman, WA, 99164, United States, (509) 335 - 2712, (509) 335 - 6115
Brian Maddox
Affiliation:
maddox3@llnl.gov, Lawrence Livermore National Laboratory, Livermore, CA, 94551, United States
Valentin Iota
Affiliation:
iota1@llnl.gov, Lawrence Livermore National Laboratory, Livermore, CA, 94551, United States
Get access

Abstract

Unusual phase transitions driven by electron correlation effects occur in many f-electron metals (lanthanides and actinides alike) from localized phases to itinerant phases at high pressures. The dramatic changes in atomic volumes and crystal structures associated with some of these transitions signify equally important changes in the underlying electronic structure of these correlated f-electron metals. Yet, the relationships among the crystal structure, electronic correlation and electronic structure in f-electron metals have not been well understood. In this study, utilizing recent advances in third-generation synchrotron x-ray spectroscopies and high-pressure diamond-anvil cell technologies, we describe the pressure-induced spectral changes across the volume collapse transition in Gd at 60 GPa and well above. The spectral results suggest that the f-electrons of high-pressure Gd phases are highly correlated even at 100 GPa – consistent with the Kondo volume collapse model and the recent experimental evidence of strong electron correlation of α-Ce.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 McMahan, A. Huscroft, C. Scalettar, R.T. and Pollock, E.L. J. of Computer-Aided Materials Design 5, 131 (1998).Google Scholar
2 Hecker, S. Plutonium and its alloys from atoms to microstructure in Los Alamos Science, November 26, (2000), p. 290.Google Scholar
3 Johansson, B. Phys. Rev. B 11, 2740 (1975).Google Scholar
4 Anderson, P. W. Phys. Rev. 124, 41 (1961).Google Scholar
5 Allen, J. W. and Martin, R. M. Phys. Rev. Lett. 49, 1106 (1982).Google Scholar
6 Maddox, B. R. Lazicki, A. Yoo, C. S. Iota, V. Chen, M. McMahan, A. K. Hu, M. Chow, P., Scalettar, R. T. and Pickett, W. E. Phys. Rev. Lett., 96, 215701 (2006).10.1103/PhysRevLett.96.215701Google Scholar
7 Yoo, C. S. Maddox, B. Klepeis, J. H. P., Iota, V. Evans, W. McMahan, A. Hu, M. Chow, P., Somayazulu, M. Häusermann, D., Scalettar, R. T. and Pickett, W. E. Phys. Rev. Lett. 94, 115502 (2005).Google Scholar
8 Iota, V. Klepeis, J.-H., Yoo, C. S. Lang, J. Haskel, D. and Srajer, G. Appl. Phys. Lett. 90, 042505 (2007).Google Scholar
9 Lin, J. F. Gavrilliuk, A. G. Struzhkin, V.V. Jacobsen, S.D. Sturhahn, W. Hu, M.Y. Chow, P. and Yoo, C. S. Phys. Rev. B 73, 11307 (2006).Google Scholar
10 Derella, C. Grioni, M. Palenzona, A. Taguchi, M. Annese, E. Ghiringhelli, G., Tagliaferri, A., Brookes, N.B. Neisius, Th., and Braicovich, L. Phys. Rev. B 70, 085112 (2004).Google Scholar
11 Krisch, M. Kao, C.C. Sette, P. Caliebe, W.A. Hämäläinen, K., and Hastings, J. B. Phys. Rev. Lett. 24, 4931 (1995).Google Scholar
12 Rueff, J.-P., Hague, C.F. Mariot, J.-M. Journel, L., Delaunay, R., Kappler, J.-P., Schmerber, G., Derory, A., Jaouen, N. and Krill, G. Phys. Rev. Lett. 93, 067402 (2004).Google Scholar
13 MacPherson, M.R. Everett, G.E. Wohllenben, D. and Maple, M.B. Phys. Rev. Lett. 26, 20 (1971).Google Scholar
14 Murani, A. P. Levelt, S. J. and Taylor, J. W. Phys. Rev. Lett. 95, 256403 (2005).Google Scholar
15 Badro, J. and Figuet, G. Phys. Rev. Lett. 89, 20554 (2002).Google Scholar
16 Groot, F. de, Chem. Rev. 101, 1779 (2001).Google Scholar