Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T10:45:49.077Z Has data issue: false hasContentIssue false

Electronegativity-Based Computation of 29Si Chemical Shifts

Published online by Cambridge University Press:  25 February 2011

Henry. M
Affiliation:
Laboratoire de Chimie de la Matière Condensée, University Pierre et Marie Curie, T54–55 4, place Jussieu, 75252 PARIS Cedex 05, FRANCE
Gerardin. C
Affiliation:
Laboratoire de Chimie de la Matière Condensée, University Pierre et Marie Curie, T54–55 4, place Jussieu, 75252 PARIS Cedex 05, FRANCE
Taulelle. F
Affiliation:
Laboratoire de Chimie de la Matière Condensée, University Pierre et Marie Curie, T54–55 4, place Jussieu, 75252 PARIS Cedex 05, FRANCE
Get access

Abstract

The Partial Charge Model has been modified to take into account the detailed structure of any molecular sol-gel precursors or inorganic solid networks. Starting from these structure-dependent partial charges, the classical theory of nuclear shielding is applied to compute the electronic cloud compacity <r-3>p, the population unbalance Pu and also the mean excitation energy ΔE. With these three parameters it is possible to explain the chemical shifts variations, spanning from +40 down to -140 ppm, of more than 50 precursors. Depending on the ligands, the well-known upside-down U-curves for series SiXnY4-n (n=0‥4) can be ascribed either to the population unbalance term Pu or to a competition between the two other terms <r-3>p and ΔE.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Artaki, I., Sinha, S., Irwin, A. D. and Jonas, J., J. Non-cryst. Solids, 72, 391 (1985)CrossRefGoogle Scholar
[2] Kelts, L., Elffingerand, N., Meipolder, S. M., J. Non-cryst. Solids, 83, 353 (1986).CrossRefGoogle Scholar
[3] Poiixviel, J. C., Boilot, J. P., Beloeil, J. C. and Lallemand, J. Y., J. Non-cryst. Solids, 89, 345 (1987).CrossRefGoogle Scholar
[4] Marsmann, H., in NMR 17, Basic Principles and Progress, edited by Diehl, P., Fluck, E. and Kosfeld, R., (Springer-Verlag, Berlin, 1986) p. 65.Google Scholar
[5] Radeglia, R., Z. Phys. Chem. Leipzig, 256, 453 (1975).CrossRefGoogle Scholar
[6] Van Wazer, J. R., Ewig, C. S. and Ditchfield, R., J. Phys. Chem., 93, 2222 (1989).CrossRefGoogle Scholar
[7] Livage, J. and Henry, M., in Ultrastructure Processing of Advanced Ceramics, Edited by Mackenzie, J. D. and Ulrich, D. R., (John Wiley & Sons, New-York, 1988) p. 183.Google Scholar
[8] Karplus, M. and Das, T. P., J. Chem. Phys., 34, 1683 (1961).CrossRefGoogle Scholar
[9] Pople, J. A., J. Chem. Phys., 37, 53 (1962).CrossRefGoogle Scholar
[10] Jameson, C. Y. and Gutowsky, H. S., J. Chem. Phys., 40, 1714 (1964).CrossRefGoogle Scholar
[11] Karplus, M. and Das, T. P. J. Chem. Phys. 34, 1683 (1961)CrossRefGoogle Scholar
[12] Hannay, N. B., in Solid State Chemistry, (Prentice Hall, Englewood Cliffs, 1967) p. 36.Google Scholar
[13] Sanderson, R. T., J. Am. Chem. Soc., 105, 2259 (1983).CrossRefGoogle Scholar
[14] Mortier, W. J., Ghosh, S. K. and Shankar, S., J. Am. Chem. Soc, 107, 829 (1985).CrossRefGoogle Scholar
[15] Henry, M. and Taulelle, F., in Proc. Int. Workshop on Application of NMR Spectroscopy to cement science, March 25–26, Guerville, France (1992).Google Scholar
[16] Tables of Interatomic Distances and Configurations in Molecules and Ions, Supplement 1956–1959, Special Publication no 18, (The Chemical Society, London, 1965).Google Scholar
[17] Nordlander, J. E., Bond, A. F. IV and Bader, M., Computers and Chemistry, 9, 209 (1985).CrossRefGoogle Scholar
[18] Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., in Numerical Recipes :The Art of Scientific Computing, (Cambridge University Press, Cambridge, 1989), p. 39.Google Scholar
[19] Clementi, E. and Raimondi, D.L., J. Chem. Phys., 38, 2686 (1963).CrossRefGoogle Scholar
[20] Barnes, R. G. and Smith, W. V., Phys. Rev., 92, 95 (1954).CrossRefGoogle Scholar
[21] Van Genechten, K., Monier, W. and Geerlings, P., J. Chem. Soc. Chem. Commun., 1278 (1986).CrossRefGoogle Scholar
[22] Malkin, V. G., Gritsenko, O. V. and Zhidomirov, G. M., Chem. Phys. Letts., 152, 44 (1988).CrossRefGoogle Scholar