Skip to main content Accessibility help
×
Home

Electron-Beam Induced Growth of Silica Nanowires and Silica/Carbon Heterostructures

  • Francisco Solá (a1), Oscar Resto (a2), Azlin M Biaggi-Labiosa (a3) and Luis F Fonseca (a4)

Abstract

A novel synthesis of silica nanowires and silica/carbon heterostructures by electron beam irradiation on porous silicon films was investigated. The method allows us to monitor the growth process in real time at atomic scales. Depending on the electron dose we obtain nanowires with diameters in the range of 15-49nm and lengths up to 500 nm. We found that the adequate electron dose was between 0.01 Acm-2 and 2 Acm-2. Additional electron dose causes plastic and failure deformations in the silica nanowires. A growth model consistent with our findings is presented that involves the flow of mass from the substrate to the nanowire driven by the local electric fields. Heterostructures showing a nanopalm-like shape are obtained after exposing the silica nanowire to poor vacuum conditions in which carbon aggregation from the surrounding gas is promoted by the local electric fields enhanced at the tip of the silica wires.

Copyright

References

Hide All
1. Iijima, S., Nature 354, 5658(1991).
2. Tong, L., Lou, J., Gattass, R., He, S., Chen, X., Liu, L., and Mazur, E., Nano Lett. 5, 259 (2005).
3. Lou, J.Y., Tong, L.M., Ye, Z., Opt. Express 13, 2135 (2005).
4. Yu, D.P., Hang, Q.L., Ding, Y., Zhang, H.Z., Bai, Z.G., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G. C., and Feng, S.Q., Appl. Phys. Lett. 73, 3076(1998).
5. C., Wu X., W. H., Song, Y., Wang K., Hu, T., Zhao, B., Y.D., Sun and Du J.J., ,Chem. Phys.Lett. 336, 53(2001).
6. Liang, C.H., Zhang, L.D., Meng, G.W., Wang, Y.W., and Chu, Z.Q., J. Non-Cryst. Solids 277, 63(2000).
7. Cullis, A.G., Canham, L.T., and Calcott, P.D.J., J. App. Phys. 82, 909 (1997).
8. Canham, L.T., Cullis, A.G., Pickering, C., Dosser, O.D., Cox, T.I., and Lynch, T.P., Nature(London) 368, 133 (1994).
9. Posada, Y., Miguel, L. San, Fonseca, L.F., Resto, O., Weisz, S.Z., Kim, C.H., and Shinar, J., J. Appl. Phys. 96, 2240 (2004)
10. Balberg, I., Philos. Mag. B 80, 691 (2000).
11. Ajayan, P.M. and Iijima, S., J. Non-Cryst. Solids 150, 423(1992).
12. Ahn, C.C. and Krivanek, O.L., EELS Atlas: a reference guide of electron energy loss spectra covering all stable elements, Gatan Inc., Warrendable, PA, USA, 1983, p. 169.
13. Egerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, New York, 1996), Chap. 5.
14. Ajayan, P.M. and Iijima, S., Philos. Mag. Lett. 65, 43 (1992).
15. Regan, B.C., Aloni, S., Ritchie, R.O., Dahmen, U., and Zettl, A., Nature (London) 428, 924 (2004).
16. Banhart, F., Phys. Rev. E 52, 5156 (1995).
17. Xie, G., Song, M., Furuya, K., Louzguine, D., and Inoue, A., Appl. Phys. Lett. 88, 263120 (2006).
18. Rotkina, L., Lin, J.-F., and Bird, J.P., Appl. Phys. Lett. 83, 4426 (2003).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed