Skip to main content Accessibility help
×
Home

Electron Spin Resonance Characterization of Defects at Interfaces in Stacks of Ultrathin High-κ Dielectric Layers on Silicon

  • A. L. Stesmans (a1) and V.V. Afanas'ev (a1)

Abstract

Electron spin resonance (ESR) analysis of (100)Si/SiO x /ZrO2, (100)Si/Al2O3 and Si/HfO2 structures with nm-thin dielectric layers deposited by different chemical vapor deposition procedures reveals, after hydrogen detachment, the presence of the trivalent Si dangling-bond-type centers Pb0, Pb1 as prominent defects in all entities. This Pb0, Pb1 fingerprint, generally unique for the thermal (100)Si/SiO2 interface, indicates that the as-deposited (100)Si/metal oxides interface is basically Si/SiO2-like. Though sensitive to the deposition process, the Pb0 density is found to be substantially larger than in standard (100)Si/SiO2. As probed by the Pb- type center properties, the Si/dielectric interfaces of all structures are under enhanced (unrelaxed) stress, typical for low temperature Si/SiO2 growth. Standard quality thermal Si/SiO2 properties in terms of Pb signature may be approached by appropriate annealing (≥ 650°C) in vacuum in the case of (100)Si/SiO x /ZrO2. Yet, O2 ambient appears required for Si/Al2O3 and Si/HfO2. It appears that Si/high-κ metal oxide structures with device grade quality interfaces can be realized with sub-nm thin SiO x interlayers. The density of fast interface states closely matches the Pb0 density variations, suggesting the center as the dominant fast interface trap. They may be efficiently passivated in H2 at 400 °C.

Copyright

References

Hide All
[1] See The International Technology Roadmap for Semiconductors 2001, Semiconductor Industry Association SIA, San Jose, Calif.)
[2] Buchanan, D.A. and Lo, S.H., Microelectron. Eng. 36, 13 (1997).
[3] Buchanan, D.A., IBM J. Res. and Develop. 43, 245 (1999).
[4] Green, M. L., Gusev, E. P., Degraeve, R., and Garfunkel, E. L., J. Appl. Phys. 90, 2057 (2001)
[5] Green, M.L., Sorsch, T.W., Timp, G.L., Muller, D.A., Weir, B.E., Silverman, P.J., Moccio, S.V., and Kim, Y.O., Microelectron. Eng. 48, 117 (1999).
[6] Lucovsky, G. et al., Appl. Phys. Lett., 74, 2005 (1999).
[7] Peacock, P. W. and Robertson, J., J. Appl. Phys. 92, 4712 (2002).
[8] Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys. 89 5243 (2001)
[9] Gusev, E. P. in Defects in SiO2 and Related Dielectrics; Science and Technology, NATO Science Series, edited by Pacchioni, G., Skuja, L., and Griscom, D. L. (Kluwer, Dordrecht, 2000) p. 557.
[10] Gusev, E. P., Cartier, E., Buchanan, D. A., Gribelyuk, M., Copel, M., Okorn-Schmidt, H., and D'Emic, C., Microelectron. Eng. 59, 341 (2001)
[11] Gusev, E.P., Copel, M., Cartier, E., Baumvol, I.J.R., Krug, C., and Gribelyuk, M.A., Appl. Phys. Lett. 76, 176 (2000).
[12] Krug, C.R., da Rosa, E.B., de Almeida, R.M., Morais, J., Baumvol, I.J., Salgado, T. D.M., and Stedile, F.C., Phys. Rev. Lett. 85, 4120 (2000).
[13] Houssa, M., Naili, M., Zhao, C., Bender, H., Heyns, M.M., and Stesmans, A., Semicond. Sci Technol. 16, 31 (2001).
[14] Kirsch, P. D., Kang, C. S., Lozano, J., Lee, J. C., and Ekerdt, J. G., J. Appl. Phys. 91 4353 (2002).
[15] Gallas, B., Brunet-Bruneau, A., Fisson, S., Vuye, G. and Rivory, J., J. Appl. Phys. 92 1922 (2002).
[16] Nishikawa, Y., Yamaguchi, T., Yoshiki, M., Satake, H., and Fukushima, N., Appl. Phys. Lett. 81 4386 (2002).
[17] Visokay, M. R., Chambers, J. J., Rotondaro, A. L. P., Shanware, A., and Colombo, L., Appl Phys. Lett. 80 3183 (2002).
[18] Cho, M.-H., Roh, Y. S., Whang, N., Jeong, K., Choi, H. J., Nam, S. W., Ko, D.-H., Lee, J. H., Lee, N. I., and Fujihara, K. K, Appl. Phys. Lett. 81 1071 (2002).
[19] Copel, M., Gribelyuk, M. and Gusev, E., Appl. Phys. Lett. 76, 436 (2000).
[20] Houssa, M., Tuominen, M., Naili, N., Afanas'ev, V., Stesmans, A., Haukka, S., and Heyns, M.M., J. Appl. Phys. 87, 8615 (2000).
[21] Copel, M., Appl. Phys. Lett. 82, 1580 (2003)
[22] Lee, J.-Ho and Ichikawa, M., J. Appl. Phys. 92, 1929 (2002)
[23] Gutowski, M., Jaffe, J. E., Liu, C.-Li, Stoker, M., Hegde, R. I., Rai, R. S., and Tobin, P. J., Appl. Phys. Lett. 80, 1897 (2002)
[24] Zafar, S., Callegari, A., Gusev, E., and Fischetti, M. V., Tech. Dig. – Int. Electron Devices Meeting 2002, 517 (2002)
[25] Zhu, W. J. and Ma, T. P., IEEE Electron Device Lett. 23, 597 (2002)
[26] Ludeke, R., Cuberes, M. T., and Cartier, E., Appl. Phys. Lett. 76, 2886 (2000)
[27] Helms, R. and Poindexter, E.H., Rep. Prog. Phys. 57, 791 (1994).
[28] Brower, K. L., Appl. Phys. Lett. 43 1111 (1983).
[29] Stesmans, A., Nouwen, B., and Afanas'ev, V., Phys. Rev. B 58, 15801 (1998).
[30] Poindexter, E. H., Semicond. Sci. Technol. 4 961 (1989).
[31] Gerardi, G. J., Poindexter, E. H., Caplan, P. J., and Johnson, N. M., Appl. Phys. Lett. 49 34 (1986).
[32] Stesmans, A. and Afanas'ev, V. V., Phys. Rev. B 57, 10030 (1998).
[33] Stesmans, A., Phys. Rev. B 48, 2418 (1993).
[34] Stesmans, A. and Afanas'ev, V. V., J. Appl. Phys. 83, 2449 (1998).
[35] Futako, W., Nishizawa, M., Yasuda, T., Isoya, J., and Yamasaki, S., in International Workshop on Gate Insulators, Edited by Ohmi, S., Fujita, K., and Momose, H. S. (Jap. Soc Appl. Phys., Tokyo, 2001) p. 130.
[36] Brower, K. L., Phys. Rev. B 38, 9657 (1988).
[37] Brower, K. L., Phys; rev. B 42, 3444 (1990)
[38] Stesmans, A., Appl. Phys. Lett. 68, 2723 (1996); 68, 2076 (1996)
[39] Stesmans, A., J. Appl. Phys. 88, 489 (2000).
[40] Hot-wall flow-type F-450 reactor, ASM Microchemistry Ltd., Finland.
[41] Campbell, S. A., Ma, T. Z., Smith, R., Gladfelter, W. L., and Chen, F., Microelectron. Eng. 59, 361 (2001).
[42] Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E., and Wance, R. O., Phys. Rev. Lett. 51, 2224 (1983).
[43] Griscom, D. L., J. Appl. Phys. 58, 2524 (1958), and references therein.
[44] Edwards, A. H., J. Non-Cryst. Solids 187, 232 (1995).
[45] Pusel, A., Wetterauer, U. and Hess, P., Phys. Rev. Lett. 81, 645 (1998).
[46] Cantin, J. L. and von Bardeleben, H. J., J. Non-Cryst. Solids 175–178, 175 (2002).
[47] Stesmans, A. and Afanas'ev, V. V., Appl. Phys. Lett. 77, 2924 (2000).
[48] Stesmans, A. and Afanas'ev, V. V., J. Phys.: Condens. Matter 13, L673 (2001).
[49] Brower, K. L., Phys. Rev. B 33, 4471 (1986).
[50] Kang, A. Y., Lenahan, P. M., and Conley, J. F. Jr, Appl. Phys. Lett. 83, 3407 (2003)
[51] Stesmans, A., J. Appl. Phys. 92, 1317 (2002)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed