Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-23T22:07:45.676Z Has data issue: false hasContentIssue false

Electron Scattering by Native Defects in Uniformly and Modulation Doped Semiconductor Structures

Published online by Cambridge University Press:  25 February 2011

W. Walukiewicz*
Affiliation:
Center for Advanced Materials, Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
Get access

Abstract

Formation of native defects in GaAs is described in terms of the amphoteric native defect model. It is shown that Fermi energy induced formation of gallium vacancies is responsible for the limitations of maximum free electron concentration in GaAs. The effect of the defects on electron mobility in heavily doped n-GaAs is quantitatively evaluated. Defect scattering explains the abrupt reduction of electron mobility at high doping levels. Also, it is demonstrated that native defects are responsible for the mobility reduction in inverted modulation doped GaAs/AlGaAs heterostructures. The amphoteric defect model also explains a distinct asymmetry in defect formation in n- and p-GaAs. In p-GaAs the Fermi level induced reduction of the defect formation energy is much smaller, and therefore the concentration of the native defects is negligible compared with the hole concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pearson, G.L., Read, W.T. and Morin, F.J., Phys. Rev. 93, 666 (1954).Google Scholar
2 Read, W.T., Phil. Mag. 46, 111 (1955).Google Scholar
3 Bonch-Bruyevich, V.L. and Glasko, V., Sov. Phys. Sol. State 3, 26 (1961).Google Scholar
4 Düster, F. and Labusch, R., Phys. Stat. Solidi (b) 60, 161 (1973).Google Scholar
5 Walukiewicz, W., J. Vac. Sci. Technol. B6, 1357 (1988).Google Scholar
6 Walukiewicz, W., Appl. Phys. Lett. 54, 2094 (1989).Google Scholar
7 Hwang, C.J., J. Appl. Phys. 40, 1983 (1969).Google Scholar
8 Hwang, C.J., J. Appl. Phys. 40, 4584 (1969).Google Scholar
9 Williams, E.W., Phys. Rev. 68, 922 (1968).Google Scholar
10 Maguire, J., Murray, R., Newman, R.C., Beall, R.B. and Harris, J.J., Appl. Phys. Lett. 50, 516 (1987).Google Scholar
11 Lideikis, T. and Treideris, G., J. Cryst. Growth 96, 790 (1989).Google Scholar
12 Okano, Y., Seto, H., Katahama, H., Nishine, S., Fujimoto, I. and Suzuki, T., Jap. Jour. Appl. Phys. 28, 6151 (1989).Google Scholar
13 Yamada, Y., Tokumitsu, E., Saito, K., Akatsuka, T., Miyauchi, M., Konagai, M. and Takahashi, K., J. Cryst. Growth 95, 145 (1989).Google Scholar
14 Baraff, G.A. and Schlüter, M., Phys. Rev. Lett. 55, 1327 (1985).Google Scholar
15 Walukiewicz, W., Proceedings of the MRS Symposium, San Diego CA, 1989, to be published.Google Scholar
16 Berggren, K.F. and Sernelius, B.E., Phys. Rev. B24, 1971 (1981).Google Scholar
17 Vieland, L.J. and Kudman, J., J. Phys. Chem. Solids 24, 437 (1963).Google Scholar
18 Sette, F., Pearton, S.J., Poate, J.M., and Rowe, J.E., Nucl. Instrum. Methods B19/20, 408 (1987).Google Scholar
19 Heiblum, M., Wang, W.I., Osterling, L.E. and Deline, V., J. Appl. Phys. 54, 6751 (1983).Google Scholar
20 Omelyanovskii, E.M. and Grishina, S.P., Sov. Phys. Semicon. 1, 813 (1968).Google Scholar
21 Walukiewicz, W., Lagowski, J., Jastrzebski, L., Lichtensteiger, M. and Gatos, H.C., J. Appl. Phys. 50, 889 (1979).Google Scholar
22 see e.g. Zawadzki, W., in Handbook on Semiconductors, edited by Paul, W. (North Holland Publ., 1982) Vol 1, p. 713.Google Scholar
23 Blakemore, J.S., J. Appl. Phys. 53, R123 (1982).Google Scholar
24 Kung, J.K. and Spitzer, W.J., J. Appl. Phys. 45, 4477 (1974).Google Scholar
25 Sacks, R. and Shen, M., Appl. Phys. Lett 47, 374 (1985).Google Scholar
26 Ito, H. and Ishibashi, T., Japan. J. Appl. Phys. 27, L707 (1988).Google Scholar
27 Walukiewicz, W., Pawlowicz, L., Lagowski, J., and Gatos, H.C., Proc. of the Conf. on Semi-Inst III-V Materials, Evian 1982, edited by Makram-Ebeid, Sherif and Tuck, Brian (Shiva Nantwich, U.K., 1982) p. 121.Google Scholar
28 Ilegems, M., J. Appl. Phys. 48, 1278 (1977).Google Scholar
29 Mellet, R., Azoulay, R., Dugrand, L., Rao, E.V.K., and Mircea, A., Inst. Phys. Conf. Ser. 63, 583 (1982).Google Scholar
30 Dingle, R., Störmer, H.L., Gossard, H.C. and Wiegmann, W., Appl. Phys. Lett. 33, 665 (1978).Google Scholar
31 Witkowski, L.C., Drummond, T.J., Stanchok, C.M. and Morkoc, H., Appl. Phys. Lett. 37, 1033 (1980).Google Scholar
32 Morkoc, H., Drummond, T.J. and Fisher, R., J. Appl. Phys. 53, 1030 (1982).Google Scholar
33 Gonzalez, L., Clegg, J.B., Hilton, D., Growers, J.P., Foxon, C.T. and Joyce, B.A., Appl. Phys. A41, 237 (1986).Google Scholar
34 Sasa, S., Saito, J., Nanbu, K., Ishikawa, T. and Hiyamizu, S., Japan. J. Appl. Phys. 23, L573 (1984).Google Scholar
35 Fang, F.F. and Howard, W.E., Phys. Rev. Lett. 16, 797 (1966).Google Scholar
36 Walukiewicz, W., Ruda, H.E., Lagowski, J., Gatos, H.C., Phys. Rev. B30, 4571 (1984).Google Scholar
37 Meirav, U., Heiblum, M. and Stern, F., Appl. Phys. Lett. 52, 1268 (1988).Google Scholar
38 Hess, K., Appl. Phys. Lett. 35, 484 (1979).Google Scholar
39 Sajoto, T., Santos, M., Heremans, J.J., Shayegan, M., Heiblum, M., Weckwerth, M.V., and Meirav, U., Appl. Phys. Lett. 54, 840 (1989).Google Scholar
40 Grützmacher, D., Meyer, R., Balk, P., Berg, C., Schäpers, T., Lüth, H., Zachau, M. and Koch, F., J. Appl. Phys. 66, 697 (1989).Google Scholar
41 Tan, T.Y. and Gösele, U., J. Appl. Phys. 61, 1841 (1987).Google Scholar
42 Walukiewicz, W., Phys. Rev. B39, 8776 (1989).Google Scholar
43 Walukiewicz, W., Appl. Phys. Lett. 54, 2009 (1989).Google Scholar