Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-05T05:25:37.404Z Has data issue: false hasContentIssue false

Electron Microscopy on GaAs Based Devices

Published online by Cambridge University Press:  10 February 2011

P. Etienne
Affiliation:
Laboratoire Central de Recherches, Thomson-CSF, Domaine de Corbeville, 91404 Orsay Cedex, France. galtier@thomson-lcr.fr
M. Magis
Affiliation:
Laboratoire Central de Recherches, Thomson-CSF, Domaine de Corbeville, 91404 Orsay Cedex, France. galtier@thomson-lcr.fr
S. Cassette
Affiliation:
Laboratoire Central de Recherches, Thomson-CSF, Domaine de Corbeville, 91404 Orsay Cedex, France. galtier@thomson-lcr.fr
S. Delage
Affiliation:
Laboratoire Central de Recherches, Thomson-CSF, Domaine de Corbeville, 91404 Orsay Cedex, France. galtier@thomson-lcr.fr
P. Galtier
Affiliation:
Laboratoire Central de Recherches, Thomson-CSF, Domaine de Corbeville, 91404 Orsay Cedex, France. galtier@thomson-lcr.fr
Get access

Abstract

We present a methodology suitable for SEM and TEM analysis on Heterojunction Bipolar Transistors (HBT) developed for microwave applications. The Focused Ion Beam (FIB) technique has been investigated for SEM observations. It is found that best results are obtained when the active areas are micromachined from the back side and at a low incidence angle. The help of backscattered electron imaging for metallurgical assessment is emphasized on that kind of devices. A combination of both precision dimpling and FIB micromachining is found to be a good solution for the achievement of TEM slabs with an acceptable thickness. Finally we present the design of a dual beam system which uses Ar+ or Ga+ ions for highest TEM slab quality built into a SEM for an accurate localization and monitoring of the milling process. The respective advantages and limitations of this method are stressed in term of precision of localization of device features, surface roughness, contamination and slab thickness. The possibility to apply this technique on 0.1 µm silicon based technology will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mondry, M. J. and Kroemer, H., ‘Heterojunction bipolar transistors using a (Ga, In)P emitter on GaAs base, grown by molecular beam epitaxy’, IEEE Electron Device Letters 6, 175 (1985).Google Scholar
2. Delage, S. L.; Forte-Poisson, M. A. di, Blanck, H., Brylinsky, C., Chartier, E. and Collot, P., ‘First microwave characterisation of LP-MOCVD grown GaInP/GaAs self-aligned HBT’, Electronic Letters 27, 253 (1991).Google Scholar
3. Basile, D. P., Boylan, R., Baker, B., Hayes, K. and Soza, D., Mater. Res. Soc. Symp. Proc. 254, 2342 (1992).10.1557/PROC-254-23Google Scholar
4. Szot, J., Hornsey, R., Ohnishi, T. and Minagawa, S., J. Vac. Sci. Technol. B, 10, 575 (1992).10.1116/1.586415Google Scholar
5. Benassayag, C., Vieu, C., Glerak, J., Sudraud, P. and Corbin, A., J. Vac. Sci. Technol., B 11, 2420 (1993)Google Scholar
6. Benedict, J., Anderson, R. and Klepeis, S. J., Mater. Res. Soc. Symp. Proc. 254, 121140 (1992).10.1557/PROC-254-121Google Scholar
7. Etienne, P., Landesman, J. P., Wysczisk, W., Cassette, S., Delage, S. L. and Lemaire, F., Advanced Interconnects and Contacts Materials and Processes for Future Ics, edited by Murarka, S., Eizenberg, M., Fraser, D., Madar, R. and Tung, R., MRS Spring meeting (San Francisco, 1998).Google Scholar
8. Overwijk, M. H. F., van den Heuvel, F. C. and Bulle-Lieuwna, C. W. T., J. Vac. Sci. Technol. B11, 2021 (1993).10.1116/1.586537Google Scholar
9. Giannuzzi, L. A., Drown, J. L., Brown, S. R., Irwin, R. B. and Stevie, F. A., Mater. Res. Soc. Proc. 480, 1927 (1992).Google Scholar