Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T05:56:41.889Z Has data issue: false hasContentIssue false

Electron Microscopy Analysis of the Central Dark Line Defect of the Human Tooth Enamel

Published online by Cambridge University Press:  01 February 2011

A. G. Rodríguez-Hernández
Affiliation:
Facultad de Odontología, UNAM. Circuito de la Investigación s/n, Ciudad Universitaria, Coyoacán 04510, México D.F., MEXICO.
M.E. Fernández
Affiliation:
Instituto Nacional de Investigaciones Nucleares, ININ. Km. 36.5 Carretera México-Toluca Ocoyoacac Edo. de México 52045., MÉXICO.
G. Carbajal-De-La-Torre
Affiliation:
Instituto de Física, UNAM. Apartado Postal 20–364, 01000 México, D.F., MÉXICO. E-mail: jreyes@fisica.unam.mx
R. García-García
Affiliation:
Instituto de Física, UNAM. Apartado Postal 20–364, 01000 México, D.F., MÉXICO. E-mail: jreyes@fisica.unam.mx
J. Reyes-Gasga
Affiliation:
Instituto de Física, UNAM. Apartado Postal 20–364, 01000 México, D.F., MÉXICO. E-mail: jreyes@fisica.unam.mx
Get access

Abstract

After some experimental results that indicated that HA is able to growth in an epitaxial way on the surface of OCP, it has been suggested that the central dark line (CDL) observed in the nanometric-sized grains of human tooth enamel corresponds to a one-unit-cell-thick layer of octacalcium phosphate (OCP). Based on this consideration, in this work we propose a model for CDL and we carried out the chemistry and structural analysis of the CDL with high resolution microscopy techniques such as Electron Energy Loss Spectroscopy (EELS) and Z-contrast (HAADF) with the aim of find the agreements and/or differences between the human tooth enamel HA and its CDL.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nelson, D.G.A., Wood, G.J., Barry, J.C. and Featherstone, J.D.B., Ultramicroscopy 19, 253266 (1986).Google Scholar
2. Bres, E.F., Waddington, W.G., Voegel, J.C., Barry, J.C. and Frank, R.M., Biophys. 1, 11051193 (1986).Google Scholar
3. Nylen, M. U., Eanes, E.D. and Omnell, K.A., J. Cell. Biol. 18, 109123 (1963).Google Scholar
4. Marshall, A.F. and Lawless, K.R., J. Dent. Res. 60, 17731782 (1981).Google Scholar
5. Hirsch, P.B., Howie, A., Nichelson, R.B., Pashley, D.W. and Whelan, M.J., in Electron microscopy of thin crystals, (Butterworths, London, 1965).Google Scholar
6. Scott, D.B., Simmelink, J.W. and Nygaard, V., J. Dent. Res. 53, 165 (1974).Google Scholar
7. Bres, E.F., Barry, J.C. and Huchison, J.L., Ultramicroscopy, 12, 367372 (1984).Google Scholar
8. Fernández, M.E., Ascencio, J. A., Zorrilla-Cangas, C., García-García, R. and Reyes-Gasga, J., Acta Cryst. B59, 175181 (2003).Google Scholar
9. Cerius 2Molecular Mechanics”, April 1997 San Diego, Molecular Simulation Inc.Google Scholar
10. Cerius 2Quantum Mechanics”, April 1997 San Diego, Molecular Simulation Inc.Google Scholar
11. Kay, M. I., Young, R. A. and Posner, A. S., Nature, 204, 1050 (1964).Google Scholar
12. Brown, W.E., Nature 196, 1048 –1050 (1962).Google Scholar
13. Brown, W.E., Smith, J.P., Lehr, J.R., and Frazier, A.W., Nature 196, 10501054 (1962).Google Scholar
14. Reyes-Gasga, J. and Garcia-Garcia, R.. Radiation Phys. Chem. 64, 359367 (2002).Google Scholar