Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T12:14:09.872Z Has data issue: false hasContentIssue false

Electron Emission Properties of Si Field Emitter Arrays Coated With Nanocrystalline Diamond From Fullerene Precursors

Published online by Cambridge University Press:  10 February 2011

T. G. McCauley
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
T. D. Corrigan
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439 Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
A. R. Krauss
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
O. Auciello
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
D. Zhou
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
D. M. Gruen
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
D. Temple
Affiliation:
Electronics Technology Division, MCNC, Research Triangle Park, NC 27709
R.P.H. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
S. English
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
R. J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

In this paper, we report on a substantial lowering of the threshold field for electron field emission from Si field emitter arrays (FEA), which have been coated with a thin layer of nanocrystalline diamond by microwave plasma-assisted chemical vapor deposition (MPCVD) from fullerene (C60) and methane (CH4) precursors. The field emission characteristics were investigated and the emission sites imaged using photoelectron emission microscopy (PEEM). Electron emission from these Si FEAs coated with nanocrystalline diamond was observed at threshold fields as low as 3 V/μm, with effective work functions as low as 0.59 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Talin, A.A., Felter, T.E., and Devine, D.J., J. Vac. Sci. Technol. B 13(2), 448 (1995).Google Scholar
2. Brandes, G.R., in Handbook of Industrial Diamonds and Diamond Films, ed. by Prelas, M. A., Popovici, G., and Bigelow, L.K. (Marcel Dekker, New York, 1998), pp. 11031127.Google Scholar
3. Cheng, H.C., Ku, T.K., Hsieh, B.B., Chen, S.H., Leu, S.Y., Wang, C.C., Chen, C.F., Hsieh, I.J., and Huang, J.C., Jpn. J. Appl. Phys. 34(I, 12B), 6926 (1995).Google Scholar
4. Givargizov, E.I., Zhirnov, V.V., Stepanov, A.N., Plekhanov, P.S., and Kozlov, R.I., Appl. Surf. Sci. 94–5, 117 (1996).Google Scholar
5. Givargizov, E.I., Aksenova, L.L., Kuznetsov, A.V., Plekhanov, P.S., Rakova, E.V., Stepanova, A.N., Zhirnov, V.V., and Nordine, P.C., Diara. Relat. Mat., 5(9), 938 (1996).Google Scholar
6. Gruen, D.M., Liu, S., Krauss, A.R., and Pan, X., J. Appl. Phys. 75(3), 1758 (1994).Google Scholar
7. Gruen, D.M., Zuiker, C.D., Krauss, A.R., and Pan, X., J. Vac. Sci. Technol. A 13(3), 1628 (1995).Google Scholar
8. Unertl, W.N. and Kordesch, M.E., in Handbook of Surface Science Vol. 1: Physical Structure, ed. by Unertl, W.N. (Elsevier, Amsterdam, 1996), pp. 361421.Google Scholar