Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-15T12:55:07.699Z Has data issue: false hasContentIssue false

Electron emission from deep traps in hydrogenated amorphous silicon and silicon-germanium: Meyer-Neldel behavior and ionization entropy

Published online by Cambridge University Press:  02 August 2011

Qi Long
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13244-1130, U.S.A.
Steluta Dinca
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13244-1130, U.S.A.
Eric A. Schiff
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13244-1130, U.S.A.
Baojie Yan
Affiliation:
United Solar Ovonic LLC, Troy, Michigan 48084, U.S.A.
Jeff Yang
Affiliation:
United Solar Ovonic LLC, Troy, Michigan 48084, U.S.A.
Subhendu Guha
Affiliation:
United Solar Ovonic LLC, Troy, Michigan 48084, U.S.A.
Get access

Abstract

We have measured electron drift in amorphous silicon-germanium nip photodiodes using the photocarrier time-of-flight technique. The samples show electron deep-trapping shortly after photogeneration, which is generally attributed to capture by a neutral dangling bond (D0) to form a negatively charged center (D-). An unusual feature is that electron re-emission from the trap is also clearly seen in the transients. Temperature-dependent measurements on the emission yield an activation energy of about 0.8 eV and the remarkably large value of 1015 Hz for the emission prefactor frequency. We also compiled results on electron emission from deep traps in a-Si:H, a-SiGe:H, and a-SiC:H from six previous publications. Collectively, these measurements exhibit "Meyer Neldel" behavior for electron emission over a range of activation energies from 0.2–0.8 eV and a prefactor range extending over nine decades, from 106 to 1015 Hz. The Meyer-Neldel behavior is consistent with the predictions of the multi-excitation entropy model. We extract a ionization entropy of 20kB from the measurements, which is very large compared to crystal silicon. We discuss this result in terms of a bond charge model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schiff, E. A., J. Phys.: Condens. Matter 16, S52655275 (2004).Google Scholar
2. Yelon, A., Movaghar, B., Phys. Rev. Lett 65, 618 (1990).10.1103/PhysRevLett.65.618Google Scholar
3. Yelon, A., Movaghar, B., and Branz, H. M., Phys. Rev. B 46, 12244 (1992).10.1103/PhysRevB.46.12244Google Scholar
4. Yelon, A., Movaghar, B., and Crandall, R. S., Rep. Prog. Phys. 69, 1145 (2006).10.1088/0034-4885/69/4/R04Google Scholar
5. Yang, J., Yan, B., Smeets, J., and Guha, S., Mater. Res. Soc. Symp. Proc. 664, A11.3 (2001).10.1557/PROC-664-A11.3Google Scholar
6. Xu, Y., Mahan, A. H., Gedvilas, L. M., Reedy, R. C., and Branz, H. M., Thin Solid Films 501, 198 (2006).10.1016/j.tsf.2005.07.171Google Scholar
7. Wang, Q., Antoniadis, H., Schiff, E. A., and Guha, S., Phys. Rev. B 47, 9435 (1993).10.1103/PhysRevB.47.9435Google Scholar
8. Dinca, S. A., Schiff, E. A., Egaas, B., Noufi, R., Young, D. L., and Shafarman, W. N., Phys. Rev. B 80, 235201 (2009).10.1103/PhysRevB.80.235201Google Scholar
9. Street, R. A., Hydrogenated Amorphous Silicon (Cambridge University Press, 1991).10.1017/CBO9780511525247Google Scholar
10. Antoniadis, H., Schiff, E. A., Phys. Rev. B. 46, 9482dd (1992).10.1103/PhysRevB.46.9482Google Scholar
11. Lee, J.-K. and Schiff, E. A., J. Non-Cryst. Solids 114, 423425 (1989).10.1016/0022-3093(89)90605-4Google Scholar
12. Datta, S., Cohen, J. D., J. Non-Cryst. Solids 354, 2126. (2008).10.1016/j.jnoncrysol.2007.10.036Google Scholar
13. Zhong, F., Chen, C. -C., Cohen, J. D., J. Non-Cryst. Solids 198-200, 572 (1996).10.1016/0022-3093(95)00766-0Google Scholar
14. Tsutsumi, Y., Phil. Mag. B 60, 695 (1988).10.1080/13642818908206048Google Scholar
15. Brinza, M., Adriaenssens, G. J., J. Mat. Sci. 14, 749 (2003).Google Scholar
16. Yan, B. and Adriaenssens, G. J., J. Appl. Phys. 77, 5661 (1995).10.1063/1.359521Google Scholar
17. Michelson, C. E., Gelatos, A. V. and Cohen, J. D., Appl. Phys. Lett 47, 412 (1985).10.1063/1.96129Google Scholar
18. Chen, W.-C., Hamel, L. -A., and Yelon, A., J. Non-Cryst. Solids. 200, 254 (1997).10.1016/S0022-3093(97)00260-3Google Scholar
19. Schiff, E. A., Phil. Mag. B 89 2505 (2009).10.1080/14786430902915370Google Scholar
20. Crandall, R. S., J. Appl. Phys. 108, 103713–1 (2010).10.1063/1.3490754Google Scholar
21. VanVechten, J. A., in Handbook of Semiconductors (edited by Keller, S. P.), Vol. 3, Chap. 1, North Holland, Amsterdam (1980).Google Scholar
22. Cody, G. D., Tiedje, T., Abeles, B., Brooks, B., and Goldstein, Y., Phys. Rev. Lett. 47, 1480 (1982).10.1103/PhysRevLett.47.1480Google Scholar
23. Crandall, R. S., Phys. Rev. B 43, 4057 (1991).10.1103/PhysRevB.43.4057Google Scholar
24. Heine, V. and VanVechten, J. A., Phys. Rev. B 13, 1622 (1976).10.1103/PhysRevB.13.1622Google Scholar
25. Van Vechten, J. A. and Thurmond, C. D., Phys. Rev. B 14, 3539 (1976).10.1103/PhysRevB.14.3539Google Scholar