Skip to main content Accessibility help

Electron beam synthesis of 3D metal nanostructures from fluoride precursors

  • Jay Ghatak (a1), T Gnanavel (a1), Wei Guan (a1) and Günter Möbus (a1)


Various metal fluoride crystals were subjected to electron beam irradiation at 200 and 300 kV using transmission electron microscopy in order to study in-situ fabrication of 3D metal nanostructures. Lithium fluoride, cobalt fluoride and aluminum fluoride salt fragments were chemically reduced and transformed by the electron beam to the corresponding metals. Using live video recording we observe that LiF crystals decompose in a unique way different to all other metal-halides. Li diffuses rapidly out of the salt crystal and covers its surface and the surrounding C-support film to many microns distance, where at random positions nucleation, growth and annihilation of Li nanorods and some nanospheres is observable. Decomposition of CoF2 also involves non-local synthesis of Co nanoparticles, mostly facetted, however, these are stable, without annihiliation, and their positioning seems to follow some degree of self-organisation. AlF3 transforms locally to Al grains inside the irradiated area only, and grain growth occurs to sizes proportional to the beam intensity. Findings are discussed in terms of displacement energy differences between the materials.



Hide All
1. Muray, A., Isaacson, M., and Adesidab, I., Appl. Phys. Lett., 45, 589 (1984).
2. Muray, A., Scheinfein, M., Isaacson, M. and Adesida, I., J. Vac. Sci. Techn. B, 3, 367 (1985).
3. Gierak, J., Vieu, C., Launois, H., Ben Assayag, G., and Septier, A., Appl. Phys. Lett., 70, 2049 (1997).
4. Langheinrich, W., Spangenberg, B., and Beneking, H., J. Vac. Sci. Techn. B, 10, 2868 (1992).
5. Malac, M., Schoefield, M., Zhu, Y. and Egerton, R., J. Appl. Phys., 92, 1112 (2002).
6. Streblechenk, Dmitry and Scheinfein, M. R., J. Vac. Sci. Technol. A, 1998, 16 1374.
7. Wang, F., Malac, M. and Egerton, R. F., Micron, 37, 316 (2006).
8. Gnanavel, T., Kumar, S., and Möbus, Günter, J. Nanosci. Nanotechnol, 11, 1019 (2010).
9. Perez, A., Balanzat, E. and Dural, J., Phys. Rev. B, 41, 3943 (1990).
10. Chen, G. S., Boothroyd, C. B. and Humphreys, C. J., Appl. Phys. Lett., 69, 170 (1996).
11. Saifullah, M. S. M., Botton, G. A., Boothroyd, C. B., and Humphreys, C. J., J. Appl. Phys., 86, 2499 (1999).
12. Schwartz, K., Volkov, A.E., Sorokin, M.V., Trautmann, C., Voss, K.-O., Neumann, R. and Lang, M., Phys. Rev. B, 78, 024120 (2008).
13. Möbus, G. and Tsai, J., Microsc Microanal, 14(Suppl 2), 248 (2008).
14. Yang, In-Sang, Anderson, A. C., Kim, Y. S. and Cotts, E. J., Phys. Rev. B, 40, 1297 (1989).
15. 29.Nadgorny, Edward M., Dimiduk, Dennis M. and Uchic, Michael D., Journal of Materials Research, 23, 2829 (2008).
16. Li, C., Gu, L., Tsukimoto, S., van Aken, P. A., and Maier, J., Adv. Mater., 22, 3650 (2010).
17. Li, C., Gu, L., Tong, J., Tsukimoto, S., and Maier, J., Adv. Funct. Mater., 21, 1391 (2011).
18. Nahum, J. and Wiegand, D. A., Phys. Rev., 154 817 (1967).
19. Youngkyoo, Kim, Nanotechnology, 19, 355207 (2008).
20. Hwajeong, Kim, Minjung, Shin and Youngkyoo, Kim, Europhysics Letters, 84, 58002 (2008).
21. Ghatak, Jay, Guan, Wei and Möbus, G., to be published.
22. Gnanavel, T., Möbus, G., to be published.
23. Herrmann, F., Pinard, P. and Farge, Y., J. Phys. C: Solid State Phys., 7, L199 (1974).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed