Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-23T20:34:54.934Z Has data issue: false hasContentIssue false

Electron Beam Study of Silicide Schottky Diodes

Published online by Cambridge University Press:  15 February 2011

H.-C. W. Huang
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (U.S.A.)
C. F. Aliotta
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (U.S.A.)
P. S. Ho
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (U.S.A.)
Get access

Abstract

An electron-beam-induced voltage (EBIV) technique has been developed to measure the barrier height of Schottky diodes. The principle of this technique is described and is compared with the conventional electron-beam-induced current (EBIC) technique. Applications of both techniques are illustrated in a study of composite silicide Schottky diodes with mixed high and low barrier areas formed using bilayer and co-evaporated Pd-Ti and Pt-Ti films on silicon substrates. The difficulty of using EBIC for quantitative studies of diode characteristics is discussed and contrasted with the advantages of the EBIV technique. The extension of the EBIV technique to contactless measurements of barrier height variation with good lateral resolution is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Schmid, P. E., Ho, P. S., Föll, H. and Rubloff, G. W., J. Vac. Sci. Technol., 18 (1981) 937.CrossRefGoogle Scholar
2 Freeouf, J. L., Rubloff, G. W., Ho, P. S. and Kuan, T. S., Phys. Rev. Lett., 43 (1979) 1836.CrossRefGoogle Scholar
Miller, J. N., Schwartz, S. A., Landau, I., Spicer, W., deMichelis, B., Abbati, I. and Braicovich, L., J. Vac. Sci. Technol., 17(1980) 920.CrossRefGoogle Scholar
3 Grunthaner, P. J., Grunthaner, F. J. and Mayer, J. W., J. Vac. Sci. Technol., 17 (1980) 924.CrossRefGoogle Scholar
Rubloff, G. W., Ho, P. S., Freeouf, J. L. and Lewis, J. E., Phys. Rev. B, 23 (15) (1981) 4183.CrossRefGoogle Scholar
4 Leamy, H. J., Appl. Phys. Rev., (1982), to be published.Google Scholar
5 Schick, J. D., in Johari, O. and Corrin, I. (eds.), Scanning Electron Microscopy, Illinois Institute of Technology Research Institute, Chicago, IL, 1974, pp. 949954.Google Scholar
Fenerbaum, H. P., in Johari, O. (ed.), Scanning Electron Microscopy, SEM Inc., AMF O'Hare, IL, 1979, pp. 285296.Google Scholar
6 Sze, S. M., Physics of Semiconductor Devices, Wiley-Interscience, New York, 1969.Google Scholar
7 van der Ziel, A., Solid State Physical Electronics, Prentice-Hall, Englewood Cliffs, NJ, 1976, p. 410.Google Scholar
8 Wells, O. C., Boyde, A., Lifshin, E. and Rezanovich, A., Scanning Electron Microscopy, McGraw-Hill, New York, 1974.Google Scholar
9 Fiebiger, J. R. and Muller, R. S., J. Appl. Phys., 43 (1972) 3202.CrossRefGoogle Scholar
10 Huang, H.-C. W. and Ho, P. S., Appl. Phys. Lett., to be published.Google Scholar
11 Wu, C. J. and Wittry, D. B., J. Appl. Phys., 49 (1978) 2827.CrossRefGoogle Scholar
12 Huang, H.-C. W., Alliotta, C. F. and Ho, P. S., Appl. Phys. Lett., 41 (1982) 54.CrossRefGoogle Scholar