Skip to main content Accessibility help

Electromigration and Diffusion in Pure Cu And Cu(Sn) Alloys

  • C.-K. Hu (a1), K. L. Lee (a1), D. Gupta (a1), P. Blauner (a1) and T. J. Watson (a2)...


Atom movements of Cu in pure Cu and Cu(0.5 to 2 wt.% Sn) alloys have been investigated using drift velocity and radioactive tracer techniques. The void growth rate in pure Cu at the cathode end, as a result of electromigration driving force, linearly increases with the applied current density. A marked decrease in the Cu grain boundary diffusivity and electromigration drift velocity is attributed to Sn trapping of Cu atoms and/or binding defects at grain boundaries. The effect is more pronounced at lower temperatures. The activation energies for electromigration and diffusion of Cu in pure Cu grain boundaries were found to be in the range of 0.7 – 0.9 eV. Addition of about 0.5 to 2 wt.% Sn increased these energies to 1.1 – 1.3 eV, respectively which resulted in enhancement of electromigration resistance by several orders of magnitude over that in pure Cu at the field operation temperature.



Hide All
1. Paraszczak, J., Edelstein, D., Cohen, S., Babich, E., Hummel, J., IEEE International Electron Devices Metting, (1993) p.261.
2. Park, C.W. and Vook, R.W., Appl. Phy. Lett. 59, 175 (1991).
3. Hu, C.-K., Luther, B., Kaufman, F.B., Hummel, J., Uzoh, C., and Pearson, D.J., Thin Solid Film, 262, 84 (1995).
4. Lee, K.L., Hu, C.-K. and Tu, K.N, J. Appl. Phys., 78, 4428 (1995).
5. Hu, C.-K.,Lee, K.Y., Lee, K.L., Cabral, C. Jr, Colgan, E.G. and Stanis, C., J. Electrochem. Soc., 143, 1001 (1996).
6. Park, C.W. and Vook, R.W., Thin Solid Films, 226, 238 (1993).
7. Estabil, J., Rathore, H. R., and Levine, E.N., Proc. of 8th Int'l VLSI Multilevel Interconnections Conf., Santa Clara, p.242, IEEE, NY 1991.
8. Hu, C.-K., Rodbell, K., Sullivan, T., Lee, K.Y., and Bouldin, D., J. IBM Res. Develop., 39, 465 (1995).
9. Ghate, P.B., in Proc. of 19th International Rel. Phys. Symp. (IEEE, NY, 1981) p.243.
10. Oates, T.A., Martin, E.P., Alugbin, D., and Nkansah, F., Appl. Phys. Lett., 62, 3273 (1993).
11. Blech, I.A., J. Appl. Phys., 47 (176) 1203.
12. Schreiber, H.-U., Solid-State Electonics, 29, 893 (1986).
13. Gupta, D., Diffusion Phenomenon in Thin Films and Microelectronic Materials, Eds.Gupta, D. and Ho, P. S.(Noyes Pub., Park Ridge NJ, 1988), pp. 172
14. Chow, M.M., Guthrie, W.L., Cronin, J.E., Kanta, C.W., Luther, B., Perry, K.A., Stanley, C.L., US Patent 4,789,648 (1988).
15. Tracy, D.P., and Knorr, D.B., J. Electronic Mat, 22, 611 (1993).
16. Valenzuela, C.G., TMS-AIME, 233, 1911 (1965).
17. McLean, D., Grain Boundaries in Metals, (Oxford University Press, London, 1957) p.76.
18. Whipple, R. T. P., Philos. Mag., 45, 1225 (1954).
19. Suzuoka, T., Trans. Jpn. Inst. Metall., 2, 25 (1961).
20. Rothman, S. J. and Peterson, N. L., Phys. Stat. Solidi, 35, 305 (1969).
21. Rheinhold, U., Neidhard, A., Krautheim, G. and Zeke, A., Phys. Stat. Solidi, A62, 255 (1980).
22. Surholt, T., Mishin, Yu. M. and Herzig, Ch., Phys. Rev., B 50, 357 (1994).
23. Huntington, H.B., in Diffusion in Solids: Recent developments, Nowick, A. S., and Burton, J. J., Editors, (Academic, NY, 1974), Chap. 4.
24. Lloyd, J.R., and Clement, J.J., Thin Solid Films, 262, 135 (1995).
25. Gupta, D., Metall. Trans., 8A, 1431 (1977).
26. Gupta, D., Canadian Metallurgical Quarterly, 34, 175 (1995).
27. Rosenberg, R., J. Vac. Sci. Technol., 9, 263 (1971).
28. Hu, C.-K., and Huntington, H.B., in Gupta, D., and Ho, P.S. (ed.), Diffusion Phenomena in Thin Films and Microelectronic Materials, (Noyes, Park Ridge, NJ, 1988), Chap. 10.
29. Ma, Q. M., Liu, C.L., Adams, J.B., and Balluffi, R.W., Acta Metall. Mater., 41, 143 (1993).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed