Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-01T21:51:38.339Z Has data issue: false hasContentIssue false

Electrochromic performance of WO3 thin films with solvent-free viscous electrolytes based on polyethylene glycol-titanium oxide nanocomposites

Published online by Cambridge University Press:  17 June 2011

Narcizo Mendoza
Affiliation:
Centro de Investigación en Energía, UNAM, Priv. Xochicalco S/N, Temixco, Morelos, 62580, México. Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih, 31109, México.
Liliana Hechavarría
Affiliation:
Centro de Investigación en Energía, UNAM, Priv. Xochicalco S/N, Temixco, Morelos, 62580, México.
Francisco Paraguay-Delgado
Affiliation:
Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih, 31109, México.
Hailin Hu
Affiliation:
Centro de Investigación en Energía, UNAM, Priv. Xochicalco S/N, Temixco, Morelos, 62580, México.
Get access

Abstract

Polymeric nanocomposites of polyethylene glycol (PEG) with titanium oxide compound, PEG-Ti, have been prepared by sol-gel method from liquid PEG and titanium isopropoxide in acidic medium. Lithium salt (LiX) has been added into PEG-Ti to form PEG-Ti-LiX polymeric electrolytes. Electrochromic devices based on tungsten oxide thin films and PEG-Ti-LiX electrolyte may show excellent optical transmittance transient, however it depends on the type of lithium salt used during the sol-gel process. With LiI, the color change speed of the devices is very fast but they show a yellow color at bleaching state. The use of LiClO4 makes the devices totally transparent in visible region but the optical contrast is small. Possible molecular structure model of these polymeric electrolytes have been analyzed to explain the relation between electrochromic performance of tungsten oxide and electrolyte chemical composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schultze, J. W. and Karabulut, H., Electrochim. Acta 50, 1739 (2005).Google Scholar
[2] Grätzel, M., J. Photochem. & Photobiology C: Photochemistry Reviews 4 145 (2003).Google Scholar
[3] Bronstein, L. M., Karlinsey, J. C., Ryder, A., and Zwanziger, J. M., Chem. Materials 13, 3678 (2001).Google Scholar
[4] Katsaros, G., Stergiopoulos, T., Arabatzis, I. M., Papadokostaki, K. G., and Falaras, P., J. Photochemistry and Photobiology A. Chemistry 149, 191 (2002).Google Scholar
[5] Di Noto, V., Gliubizzi, R., Negro, E., and Pace, G., J. Phys. Chem. B 110, 24972 (2006).Google Scholar
[6] Akhtar, M. S., Chun, J. M., and Yang, O. B., Electrochem. Commun. 9, 2933 (2007).Google Scholar
[7] Hechavarria, L., Mendoza, N., Altuzar, P., and Hu, H. J. Solid State Electrochem. 14, 323 (2010).Google Scholar
[8] Mendoza, N., Paraguay-Delgado, F., Hechavarría, L., Nicho, M. E., and Hu, H., submitted.Google Scholar
[9] Cronin, J. P., Tarico, D. J., Agrawal, A., and Zhang, R. L. USA Patent 5,277,986 (1994).Google Scholar