Skip to main content Accessibility help
×
Home

Electrochemical Characterization of the Stainless Steel Corrosion immersed in Seawater under Turbulent Flow conditions by Electrochemical Noise

  • D. Cabrera-de la Cruz (a1), R. Galván-Martínez (a1), R. Orozco-Cruz (a1), R. Torres-Sánchez (a2) and A. Contreras (a3)...

Abstract

The electrochemical studies of the corrosion can provide indirect techniques that they can determinate the corrosion rate of metals or alloys immersed in a corrosive medium. For many years, most studies about the cathodic and anodic polarization behaviour of metals have been confined to traditional steady-state techniques, such as potentiodynamic sweep measurements. However, steady-state techniques are limited because they give information only on the rate-determining step. Moreover, during the measuring process, technique such as potentiodynamic sweep polarize the electrode surface to such a great extent, in order to uncover corrosion mechanism, that the validity of the results can be questioned particularly in the cases when protective films. Transient electrochemical techniques such as Electrochemical Noise (EN), are less intrusive because they can provide information about the processes without disturbing the reactions with the voltage application.

Copyright

References

Hide All
1. Aballe, A., Bautista, A., Bertocci, U., Huet, F., NACE-Corrosion /2000, Paper No. 424, USA, (2000).
2. Martinez, R. Galvan, et al, Materials and Corrosion, 55, 586 (2004).
3. Hladky, K., Dawson, J.L., Corrosion Monitoring using Low Frequency Electrochemical Noise, Corrosion and Protection Centre, UMIST, Manchester, England.
4. Legat, A., NACE-Corrosion/ 2000, Paper No. 426, USA, (2000).
5. Wharton, J.A., Mellor, B.G., Wood, R.J.K., Smith, C.J.E., NACE-Corrosion /2000, Paper No. 417, USA, (2000).
6. Mansfeld, F., Lee, C.C., NACE-Corrosion/99, Paper No. 195, USA, (1999).
7. Mansfeld, F., Sun, Z., Speckert, E., Hsu, C.H., NACE-Corrosion /2000, Paper No. 418, USA, (2000).
8. Bertocci, U. et al, Corrosion, 56, 675 (2000).
9. Nesic, S. et al, Corrosion, 51, 773 (1995).
10. Galvan-Martinez, R., Mendoza-Flores, J., Duran-Romero, R., Genesca, J., Materials and Corrosion, 58, 514, (2007).
11. Gabe, D.R., J. Appl. Electrochemistry, 4, 91 (1974).
12. Gabe, D.R., Walsh, F.C., J. Appl. Electrochemistry, 13, 3 (1983).
13. Poulson, B., Corrosion Science, 23, 391 (1983).
14. M., Schumacher (Editor), Seawater Corrosion Handbook, William Andrew Publishing/Noyes data corp., published in USA, (1979), pp. 2427.
15. Eden, D.A., NACE-Corrosion /98, Paper No. 386, USA, (1998).
16. ASTM G 199–09. Standard Guide for Electrochemical Noise Measurement, American Society for Testing and Materials, USA, (2009).
17. Kelly, R. G., Inman, M. E., Hudson, J. L., Electrochemical Noise Measurement for Corrosion Applications, ASTM STP 1277, Edited by J.R., Kearns, J.R., Scully, P.R., Roberge, D.L., Reichert, J.L., Dawson, American Society for Testing and Materials, USA, (1996).

Keywords

Electrochemical Characterization of the Stainless Steel Corrosion immersed in Seawater under Turbulent Flow conditions by Electrochemical Noise

  • D. Cabrera-de la Cruz (a1), R. Galván-Martínez (a1), R. Orozco-Cruz (a1), R. Torres-Sánchez (a2) and A. Contreras (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed