Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-07T22:31:55.896Z Has data issue: false hasContentIssue false

Electrochemical and Chemical Sulfidation of GaAs: A Surface Chemical Study

Published online by Cambridge University Press:  21 February 2011

J. Yota
Affiliation:
Department of Chemical, Bio, and Materials Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287–6006
V. A. Burrows
Affiliation:
Department of Chemical, Bio, and Materials Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287–6006
Get access

Abstract

Treatment of gallium arsenide with sulfur-containing media has been shown to improve GaAs surface electronic properties. However, there is still considerable controversy regarding the chemical nature of the surface film which results from the sulfidation, and of the basis of the electronic improvement and of the decay in the improved electronic properties with time. We have investigated the surface chemistry of the chemical sulfidation treatment of GaAs with Na2S-9H2O and the electrochemical sulfidation treatment of GaAs with Na2S-9H2O-ethylene glycol. Using surface infrared spectroscopy (SIRS), we have studied the film formed on the surface after the treatments and its behavior with time. Results show that the film on the GaAs surface contains sulfur which is often associated with oxygen, that this film slowly reacts in air to form unexpected species, e.g. sodium carbonate and sulfur-oxygen group-containing compounds, and that sulfur and oxygen are non-uniformly distributed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Yablonovitch, E., Sandroff, C. J., Bhat, R., and Gmitter, T., Appl. Phys. Lett. 51, 349 (1987).Google Scholar
[2] Fan, J. F., Oigawa, H., and Nannichi, Y., Jpn. J. Appl. Phys. 27, L1331 (1988).Google Scholar
[3] Carpenter, M. S., Melloeh, M. R., and Lundsrrom, M. S., Appl. Phys. Lett. 52, 2157 (1988).Google Scholar
[4] Besser, R. S. and Helms, C. R., Appl. Phys. Lett. 52, 1707 (1988).Google Scholar
[5] Hasegawa, H., Ishii, H., Sawada, T., Saitoh, T., Konshi, S., Liu, Y., and Ohno, H., J. Vac. Sci. Technol. B 6, 1184(1988).Google Scholar
[6] Carpenter, M. S., Melloch, M. R., and Dungan, T. E., Appl. Phys. Lett. 53, 66 (1988)Google Scholar
[7] Sandroff, C. J., Nottenburg, R. N., Bischoff, J. -C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).CrossRefGoogle Scholar
[8] Nottenburg, R. N., Sandroff, C. J., Humphrey, D. H., Hollenbeck, T. H., and Bhat, R., Appl. Phys. Lett. 52, 218 (1988).Google Scholar
[9] Mauk, M. G., Xu, S., Arent, D. J., Mertens, R. P., and Borghs, G., Appl. Phys. Lett. 54, 213 (1989).Google Scholar
[10] Sandroff, C. J., Hedge, M. S., Farrow, L. A., Chang, C. C., and Harbison, J. P., Appl. Phys. Lett. 54 362 (1989).CrossRefGoogle Scholar
[11] Sandroff, C. J., Hedge, M. S., Farrow, L. A., Bhat, R., Harbison, J. P., and Chang, C. C., J. Appl. Phys. 67, 586 (1990).Google Scholar
[12] Besser, R. S. and Helms, C. R, J. Appl. Phys. 65, 4306 (1989).CrossRefGoogle Scholar
[13] Shin, J., Geib, K. M., Wilmscn, C. W., Lilliental-Weber, Z., J. Vac. Sci. Technol. A 8, 1894 (1989).CrossRefGoogle Scholar
[14] Oigawa, H., Fan, J. F., Nannichi, Y., Ando, K., Saiki, K., and Koma, A., Jpn. J. Appl. Phys. 28, L340 (1989).CrossRefGoogle Scholar
[15] Hirayama, H., Matsumoto, Y., Oigawa, H., and Nannichi, Y., Appl. Phys. Lett. 54, 2565 (1989).Google Scholar
[16] Carpenter, M. S., Melloch, M. R., Cowans, B. A., Dardas, Z., and Delgass, W. N., J. Vac. Sci. Technol. B 7, 845 (1989).CrossRefGoogle Scholar
[17] Sandroff, C. J., Hedge, M. S., and Chang, C. C., J. Vac. Sci. Technol. B 7, 841 (1989).Google Scholar
[18] Tiedje, T., Wong, p. c., Mitchell, K. A. R., Eberhardt, W., Fu, Z., and Sondericker, D., Solid State Comm. 70, 355 (1989).Google Scholar
[19] Spindt, C. J., Liu, D., Miyano, K., Meissner, P. L., Chiang, T. T., Kendelewics, T., Lindau, I., and Spicer, W. E., Appl. Phys. Lett. 55, 861 (1989).Google Scholar
[20] Tiedje, T., Colbow, K. M., Rogers, D., Fu, Z., and Eberhardt, W., J. Vac. Sci. Technol. B 7, 837 (1989).Google Scholar
[21] Wilmsen, C. W., Kirchner, P. D., Baker, J. M., Mclnturff, D. T., Pettit, G. D., and Woodall, J. M., J. Vac. Technol. B 6, 1180 (1988).Google Scholar
[22] Burrows, V. A. and Yota, J., Thin Solid Films 193, 371 (1990).Google Scholar
[23] Yota, J. and Burrows, V. A., J. Appl. Phys. 69, 7369 (1991).CrossRefGoogle Scholar
[24] Yota, J. and Burrows, V. A., J. Vac. Sci. Technol. A, in press.Google Scholar
[25] Ipposhi, T., Takita, K., Murakami, K., Masuda, K., Kudo, H., and Seki, S., J. Appl. Phys. 63, 132 (1988).CrossRefGoogle Scholar
[26] Strong, R. L., Luttmer, J. D., Little, D. D., Teherani, T. H., Helms, C. R., J. Vac. Sci. Technol. A 5, 3207 (1987).Google Scholar
[27] Ziegler, J. P., Lindquist, J. M., and Hemminger, J. C., J. Appl. Phys. 65, 2523 (1989).Google Scholar
[28] Nemirovsky, Y., Burstcin, L., and Kidron, I., J. Appl. Phys. 58, 366 (1985).Google Scholar
[29] Nemirovski, Y., Adar, R., Kornfeld, A., and Kidron, I., J. Vac. Sci. Technol. A 4, 1986 (1986).Google Scholar
[30] Nyquist, R. A. and Kagel, R. O., Infrared Spectra of Inorganic Spectra Compounds(Academic, New York, NY, 1971) p. 77.Google Scholar
[31] Miller, F. A. and VVilkins, C. H., Anal. Chem. 24, 1262 (1952).Google Scholar
[32] Windholz, M., Budavari, S., Blumctti, R. F., and Otterbein, E. S., The Merck Index (Merck, Rahway. NL, 1983) p. 8526.Google Scholar
[33] Pouchert, C., The Aldrich Library of Infrared Spectra, Ed. III (Aldrich, Milwaukee, WI, 1981) p. 527.Google Scholar
[34] Pavia, D. L., Lampman, G. M., and Kriz, G. S. Jr, Introduction to Spectroscopy (Saunders, Philadelphia, PA, 1979) p. 69.Google Scholar
[35] Lenczycki, C. T. and Burrows, V. A., Thin Solid Films 192, 610 (1990).CrossRefGoogle Scholar