Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-28T07:59:50.386Z Has data issue: false hasContentIssue false

Electroactive and Photoactive Rod-Coil Block Copolymers: Self-Organization and Photophysical Properties

Published online by Cambridge University Press:  10 February 2011

X. Linda Chen
Affiliation:
Departments of Chemical Engineering and Chemistry, University of Rochester, Rochester, New York 14627-0166
Samson A. Jenekhe
Affiliation:
Departments of Chemical Engineering and Chemistry, University of Rochester, Rochester, New York 14627-0166
Get access

Abstract

Two series of new electroactive and photoactive coil-rod-coil and rod-coil-rod triblock copolymers, poly (pentadecamethylene carboxester)-block - poly(p-phenylene benzobisthiazole) - block - poly (pentadecamethylene carboxester) (1), and poly(2,6-benzoxazole)-block poly(benzobisthiazole decamethylene)-block-poly(2,6-benzoxazole) (2), were synthesized, characterized, and used to investigate the self-assembly properties of rod-coil block copolymers. The progressive band narrowing of the absorption spectrum of thin films of 1 confirmed the effects of spatial confinement with increasing coil block size. Photoluminescence studies of thin films of 1 and 2 showed the effects of self-organization, annealing at 110 °C, block lengths, and composition on photophysical properties. Bilayer photoreceptors consisting of a layer of block copolymer as the charge generation layer and a layer of tris(p-tolyl)amine dispersed in polycarbonate as a trap-free hole transport layer were oberved to have high quantum efficiency, good photosensitivity and good dark decay.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Semenov, A. N. and Vasilenko, S. V., Sov. Phys. 63, 70 (1986). (b) A. N. Semenov, Mol. Cryst. Liq. Cryst. 209, 191 (1991).Google Scholar
2. Halperin, A., Macromolecules 23, 2724 (1990).Google Scholar
3. Williams, D. R. M. and Fredrickson, G. H., Macromolecules 25, 3561 (1992).Google Scholar
4. (a) Raphael, E. and de Gennes, P. G., Physica A 177, 294 (1991). (b) E. Raphael and P. G. de Gennes, Makromol. Chem.; Macromol. Symp. 62, 1 (1992).Google Scholar
5. Vernino, D., Tirrell, D. and Tirrell, M., Polym. Mater. Sci. Eng. 71(2), 496 (1994).Google Scholar
6. (a) Chen, J. T., Thomas, E. L., Ober, C. K. and Mao, G. -P., Science 273, 343 (1996). (b)J. T. Chen, E. L. Thomas, C. K. Ober and S. S. Hwang, Macromolecules 28, 1688 (1995).Google Scholar
7. (a) Radzilowski, L. H., Wu, J. L. and Stupp, S. I., Macromolecules 26, 879 (1993). (b) L. H. Radzilowski and S. I Stupp, Macromolecules 27, 7747 (1994).Google Scholar
8. Osaheni, J. A., Jenekhe, S. A. and Perlstein, J., J. Phys. Chem. 98,12727 (1994).Google Scholar
9. (a) Jenekhe, S. A. and Osaheni, J. A., Science 265, 765 (1994). (b) J. A. Osaheni and S. A. Jenekhe, J. Am. Chem. Soc. 117, 7389 (1995).Google Scholar
10. (a) Krause, S. J., Haddock, T. B., Vezie, D. L., Lenhert, P. G., Hwang, W. -F., Price, G. E., Helminiak, T. E., O'Brien, J. F. and Adams, W. W., Polymer 29, 1354 (1988). (b) R. J. Young and P. P. Ang, Polymer 33, 975 (1992).Google Scholar
11. Wolfe, J. F., In Encyclopedia of Polymer Science and Engineering, Vol 11, 2nd ed. Wiley: New York, 1988, pp601635.Google Scholar