Skip to main content Accessibility help

Electrically Based Non-Destructive Microstructural Characterization of All Classes of Materials

  • Rosario A. Gerhardt (a1)


This paper gives a short summary of the background, theory and methodology needed to utilize electrical measurements as a non-destructive method for microstructural characterization. Examples are given for all classes of materials. Details are given for how to detect: (1) pore volume in thermal barrier coatings, (2) formation of surface layers due to moisture adsorption in a wide variety of materials, (3) orientation of fibers and whiskers in ceramic matrix and polymer matrix composites, (4) crack detection in metals and (5 ) stacking faults in semiconductors. Many other examples are mentioned. It needs to be emphasized that electrical measurements alone are not sufficient to identify the microstructural features of interest but must always be accompanied by complementary techniques. Proper data collection and data interpretation of properties of a specific set of materials can lead to in-line process monitoring, quality control monitoring, mechanical damage monitoring and environmental degradation monitoring of those materials.



Hide All
1. Gerhardt, R.A., Taylor, S.R. and Garboczi, E.J., eds., Electrically Based Microstructural Characterization, Mat. Res. Symp. Proc. Vol. 411, 435 pages (1996).
2. Gerhardt, R.A., Alim, M.A. and Taylor, S.R., eds., Electrically Based Microstructural Characterization II, Mat. Res. Symp. Proc. Vol. 500, 367 pages (1998).
3. von Hippel, A.R., Dielectrics and Waves, John Wiley & Sons, 1954.
4. Duchow, K.J. and Gerhardt, R.A., “Dielectric Characterization of Wood and Wood Infiltrated with Ceramic Precursors,” Mat.Sc.Eng. C4, 125131 (1996).10.1016/0928-4931(95)00129-8
5. Gerhardt, R., “Dielectric and Impedance Spectroscopy Revisited: Distinguishing Localized Relaxation from Long Range Conductivity,” J.Phys. Chem.Solids 55[12], 14911506 (1994).10.1016/0022-3697(94)90575-4
6. Macdonald, J. Ross, ed., Impedance Spectroscopy: Emphasizing Solid Materials and Systems, John Wiley & Sons, 1987.
7. Sillars, R.W., “The properties of a Dielectric containing Semiconducting Particles of Various Shapes,” J. Inst.Elect.Engrs. 80, 378394 (1937).
8. Hilfer, R., “Geometric and Dielectric Characterization of Porous Media,” Phys.Rev. B 44, 6085(1991).10.1103/PhysRevB.44.60
9. Kingery, W.D., Bowen, H.K. and Uhlmann, D.R., Introduction to Ceramics, 2ed edition, John Wiley and Sons. 1976.
10. Gerhardt, R., “Composites for Electronic Substrate Applications,” Mat.Res.Symp.Proc. 108, 101106 (1988).10.1557/PROC-108-101
11. McLachlan, D.S., Blaszkiewicz, M. and Newnham, R.E., “Electrical Resistivity of Composites,” J Am. Ceram.Soc. 73[8], 2187(1990).10.1111/j.1151-2916.1990.tb07576.x
12. Kokan, J.R., Gerhardt, R.A., Ruh, R. and McLachlan, D.S., “Dielectric Spectroscopy of Insulator-Conductor Mixtures,” Mat. Res. Symp. Proc. 500, 341346 (1998).
13. Runyan-Kokan, J., Gerhardt, R.A. and Ruh, R., “Electrical Properties of BN Matrix Composites: Part I” J. Am. Ceram. Soc., in press.
14. Gerhardt, R. and Grossman, T.R., “Characterization of Porosity in Thermal Barrier Coatings,” Ceram. Trans. Vol. 11, 189200(1990).
15. Ciccarelli, S., Gerhardt, R.A. and Grossman, T.R., “Electrical Property-Porosity Relationships in Plasma Sprayed Coatings,” unpublished results.
16. Cochran, J.K., Chu, P.R., Huang, T.J., “Thin wall hollow spheres from slurries,” US DOE presentation, 1992 and Torobin, L.B., U.S. Patent 4,671,909, June 1987.
17. Dinkins, W.R., Gerhardt, R.A. and Cochran, J.K. Jr., unpublished results.
18. Dinkins, W.R., M.S. Thesis, Georgia Institute of Technology, 1994.
19. Cao, W., Gerhardt, R. and Wachtman, J.B. Jr., “Dielectric relaxation of water adsorbed on monolithic porous silica gels,” Ceram. Trans. vol. 8, 175184 (1990).
20. Kokan, J.R. and Gerhardt, R.A., “Humidity Effects on Porous Silica Thin Films,” Mat.Res.Symp.Proc. 411, 419424 (1996).10.1557/PROC-411-419
21. Duchow, K. J., M.S. Thesis, Georgia Institute of Technology, 1996.
22. Bulinski, A.J., Damji, S. and Das-Gupta, D.K., “Effect of Moisture on Polyimide materials,” IEEE Proc. CEIDP, 600–603 (1996).
23. Kokan, J.R., Zhang, G. and Gerhardt, R.A., “Porous Silica in Bulk and Thin Film Form for Use in Humidity Sensing Applications,” Proc. 6th Intl. Workshop on Moisture in Microelectronics, 1996.
24. Gerhardt, R.A. and Cao, W., “Distinguishing bulk water from adsorbed water via dielectric measurements,” IEEE Proc. CEIDP, 102–105 (1996).
25. Ruh, R., Donaldson, K. and Hasselman, D.P.H., “Thermal Conductivity of Boron Carbide-Boron Nitride Composites,” J Am. Ceram.Soc. 75[10],28872890(1992).10.1111/j.1151-2916.1992.tb05525.x
26. Sbaizero, O. and Evans, A.G., “Tensile and Shear Properties of Laminated Ceramic Matrix Composites,” J.Am.Ceram.Soc. 69[6], 481492 (1986).10.1111/j.1151-2916.1986.tb07449.x
27. Gerhardt, R., “Microstructural Characterization of Composites via Electrical Measurements,” Ceram.Eng.Sc.Proc. 15[5], 11741181 (1994).10.1002/9780470314555.ch67
28. Gerhardt, R., Yang, F. and Saxena, A., unpublished results.
29. Gerhardt, R. and Ruh, R., “Electrical Properties of SiC Whisker Reinforced Mullite Composites: I. Volume fraction and whisker orientation dependence,” J.Mat.Sc., in press.
30. Runyan-Kokan, J., Gerhardt, R.A. and Ruh, R., “Electrical Properties of BN Matrix Composites III” J. Am. Ceram. Soc., in press.
31. Gerhardt, R., Phillips, K.C. and Logan, K.V., unpublished results.
32. Brosseau, C., Bourbigot, C., Queffelec, P., LeMest, Y., Loaec, J. and Beroual, A., “Dielectric and Microstructural Properties of Polymer-Carbon Black Composites,” Proc. IEEE CEIDP, 208–211 (1996).
33. Gerhardt, R. and McLachlan, D.S., “Frequency Behavior of Percolating Systems,” J.Phys.Chem.Solids, in press.
34. Runyan-Kokan, J., Gerhardt, R.A. and Ruh, R., “Electrical Properties of Boron Carbide-Boron Nitride Composites: Observations Near Percolation Threshold,” J.Am.Ceram.Soc., in press.
35. Cretegny, L.C., Gerhardt, R.A. and Saxena, A., unpublished results.
36. Kokan, J. R., Gerhardt, R.A. and Su, Ching-Hua, “Dielectric Spectroscopy Study of ZnSe Grown by Physical Vapor Transport,” Mat.Res.Symp.Proc. 487, 517522(1998).10.1557/PROC-487-517

Related content

Powered by UNSILO

Electrically Based Non-Destructive Microstructural Characterization of All Classes of Materials

  • Rosario A. Gerhardt (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.