Skip to main content Accessibility help
×
Home

Electrical Transport Properties of the Pentatelluride Materials Hfte5 and Zrte5

  • T. M. Tritt (a1) (a2), M. L. Wilson (a1), R. L. Littleton (a1), C. Feger (a3), J. Kolis (a3) (a2), A. Johnson (a1), D. T. Verebelyi (a1), S. J. Hwu (a3) (a2), M. Fakhruddin (a1) and F. Levy (a4)...

Abstract

We have measured the resistivity and thermopower of single crystals as well as polycrystalline pressed powders of the low-dimensional pentatelluride materials: HfTe5 and ZrTe5. We have performed these measurements as a function of temperature between 5K and 320K. In the single crystals there is a peak in the resistivity for both materials at a peak temperature, Tp where Tp ≈ 80K for HfTe5 and Tp ≈ 145K for ZrTe5. Both materials exhibit a large p-type thermopower around room temperature which undergoes a change to n-type below the peak. This data is similar to behavior observed previously in these materials. We have also synthesized pressed powders of polycrystalline pentatelluride materials, HfTe5 and ZrTe5. We have measured the resistivity and thermopower of these polycrystalline materials as a function of temperature between 5K and 320K. For the polycrystalline material, the room temperature thermopower for each of these materials is relatively high, +95 μV/K and +65 μV/K for HfTe5 and ZrTe5 respectively. These values compare closely to thermopower values for single crystals of these materials. At 77 K, the thermopower is +55 μV/K for HfTe5 and +35 μV/K for ZrTe5. In fact, the thermopower for the polycrystals decreases monotonically with temperature to T ≈ 5K, thus exhibiting p-type behavior over the entire range of temperature. As expected, the resistivity for the polycrystals is higher than the single crystal material, with values of 430 mΩ-cm and 24 mΩ-cm for Hfre5 and ZrTe5 respectively, compared to single crystal values of 0.35 mΩ-cm (HfTe5) and 1.0 mΩ-cm (ZrTe5). We have found that the peak in the resistivity evident in both single crystal materials is absent in these polycrystalline materials. We will discuss these materials in relation to their potential as candidates for thermoelectric applications.

Copyright

References

Hide All
1.) Goldsmid, H. J., Electronic Refrigeration, (Pion Limited Publishing, London, (1986)
2.) CRC Handbook of Thermoelectrics, edited by Rowe, D. M., CRC Press, Boca Raton (1995)
3.) Wood, C. W., Rep. Prog. Phys. 51, 459539 (1988)
4.) Sloan, J., Superconductor Industry, Fall 1996, p30 (1996)
5.) Tritt, Terry M., Science, 272, 1276 (1996)
6.) Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B., 47, 12727 (1993)
7.) Fleuriel, J. P., Calliet, T. and Borshchevsky, A., Proc. of the XIII International Conference on Thermoelectrics, AIP, p 4044 (1995)
8.) Sales, B. C., Mandrus, D. and Williams, R. K., Science, 272, 1325 (1996)
9.) Morelli, D. T. et. al., Phys. Rev. B, 51, 9622 (1995)
10.) Slack, Glen A. and Toukala, V. G., Jour. Appl. Phys., 76, 1635 (1994)
11.) Nolas, G., Slack, G., Morelli, D. T., Tritt, T. M. and Ehrlich, A. C., Jour. Appl. Phys., 79, 4002 (1996)
12.) Tritt, T. M. et. al., Jour. Appl. Phys., 79, 8412 (1996)
13.) Nolas, G., Slack, G., Harris, V. G. and Tritt, T. M., Jour. Appl. Phys., 80, 6304 (1996)
14.) Jones, T. E. et. al., Solid St. Comm., 42, 793 (1982)
15.) DiSalvo, F. J., Fleming, R. M. and Waszczak, J. V., Phys. Rev. B., 24, 2935 (1981)
16.) Fuller, W. W. et. al., Journal de Physique, C 3, 1709 (1983)
17.) Isumi, M., et. al., Solid State Comm., 42, 773 (1982)
18.) Bullett, D. W., Solid State Comm., 42, 691 (1982)
19.) Kamm, G. N. et. al., Phys. Rev. B., 35, 1223 (1987)
20.) Kamm, G. N. et. al., Phys. Rev. B., 31, 7617 (1985)
21.) Stillwell, E. P., Ehrlich, A. C., Kamm, G. N. and Gillespie, D. J., Phys. Rev. B., 39, 1626 (1989)
22.) Verebelyi, D. T, accepted for publication, Rev. Sci. Instrum.
23.) Lyons, Hylan, private comm., Goldsmid, H. J. et. al., Jour. of Phys. D, 21, 344 (1988)
24.) Yim, W. M. and Amith, A., Solid State Electronics, 15, 1141 (1972)

Electrical Transport Properties of the Pentatelluride Materials Hfte5 and Zrte5

  • T. M. Tritt (a1) (a2), M. L. Wilson (a1), R. L. Littleton (a1), C. Feger (a3), J. Kolis (a3) (a2), A. Johnson (a1), D. T. Verebelyi (a1), S. J. Hwu (a3) (a2), M. Fakhruddin (a1) and F. Levy (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed