Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-27T16:45:46.639Z Has data issue: false hasContentIssue false

Electrical Transport Properties of Cu3Ge Thin Films

Published online by Cambridge University Press:  03 September 2012

M. O. Aboelfotoh*
Affiliation:
IBM T. J. Watson Research Center, P. 0. Box 218, Yorktown Heights, New York 10598
Get access

Abstract

We present results of electrical transport studies performed on thin films of ε1-Cu3Ge in the temperature range 4.2 – 300 K. It is found that ε1-Cu3Ge which has a long-range ordered monoclinic crystal structure, exhibits a remarkably low metallic resistivity of σ 6 μΩ cm at room temperature. The density of charge carriers, which are predominantly holes, is σ 8 × 1022/cm3 and is independent of temperature and film thickness. The Hall mobility at 4.2 K is σ 132 cm2/V s, considerably higher than in pure copper. The elastic mean free path is found to be σ 1200Å, which is surprisingly large for a metallic compound film. The results show that the residual resistivity is dominated by surface scattering rather than grain-boundary scattering. It is also found that by varying the Ge concentration from 0 to 40 at. % the resistivity exhibits anomalous behavior. This behavior is correlated with changes observed in the crystal structure of the thin-film alloys as the Ge concentration is increased. The resistivity remains close to that of the ε1-Cu3Ge phase over a range of Ge concentration which extends from 25 to 35 at. %

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nava, F., Tu, K. N., Thomas, O., Senateur, J. P., Madar, R., Borghesi, A., Guizzetti, G., Laborde, O., and Bisi, O., Mater. Sci. Rep. 9, 141 (1993).CrossRefGoogle Scholar
2. Chabal, Y. J., Hamann, D. R., Rowe, J. E.. and Schluter, M., Phys. Rev. B, 25, 7598 (1982).CrossRefGoogle Scholar
3. Krusin-Elbaum, L. and Aboelfotoh, M. O., Appl. Phys. Lett. 58, 1341 (1991): M. O. Aboelfotoh and L. Krusin-Elbaum, J. Appl. Phys. 70, 3382 (1991).CrossRefGoogle Scholar
4. Hensel, J. C., Tung, R. T., Poate, J. M., and Unterwald, F. C., Appl. Phys. Lett. 44, 913 (1984); Phys. Rev. Lett. 54, 1840 (1985).CrossRefGoogle Scholar
5. Goldstein, J. I., Williams, D. B., and Cliff, G., in Principles of Analytical Electron Microscopy, edited by Joy, D. C.. Roming, A. D., and Goldstein, J. I. (Plenum Press, New York, 1986), p.155.CrossRefGoogle Scholar
6. Pauw, L. J. Van der, Philips Res. Rep. B, 13. 1 (1957).Google Scholar
7. Standard Power Diffraction Pattern #6--693.Google Scholar
8. Aboelfotoh, M. O. and Tawancy, H. M.. J. Appl. Phys. (to be published).Google Scholar
9. See for example, Ziman, J. M., Principles of the Theory of Solids (Cambridge University, Cambridge, 1972).Google Scholar
10. Aboelfotoh, M. O., Tawancy, H. M.. and Krusin-Elbaun, L., Appl. Phys. Lett. 63, 1622 (1993).Google Scholar
11. Krusin-Elbaum, L., Sun, J. Y. -C., and Ting, C. -Y., IEEE Trans. Electron Devices ED–34, 58 (1987); L. Krusin-Elbaum, M. Wittmer, and D. S. Yee, Appl. Phys. Lett. 50, 1879 (1987).Google Scholar
12. Fuchs, K., Cambridge Philos. Soc. 34, 100 (1938).CrossRefGoogle Scholar
13. Sondheimer, E. H., Adv. Phys. 1. 1 (1952).Google Scholar
14. Barrett, C. S. and Massalski, T. B., Structure of Metals (McGraw Hill, New York, 1966), p. 358.Google Scholar
15. Swan, P. R., in Electron Microscopy and Strenght of Crystals, edited by Thomas, G. and Washburn, J. (Wiley Interscience., New York, 1963), p. 131.Google Scholar
16. Mott, N. F. and Jones, H., The Theory of the Properties of Metals and Alloys (Dover Publications, New York, 1958), p. 292.Google Scholar