Skip to main content Accessibility help
×
Home

Electrical Properties of CuTCNQ Based Organic Memories Targeting Integration in the CMOS Back End-of-Line

  • Robert Mueller (a1), Joris Billen (a2), Rik Naulaerts (a3), Olivier Rouault (a4), Ludovic Goux (a5), Dirk J Wouters (a6), Jan Genoe (a7) and Paul Heremans (a8)...

Abstract

CuTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) is a resistive switching charge-transfer complex which can be used for organic nonvolatile memories. In this contribution we report on a thorough investigation of the electrical switching of CuTCNQ memories. Our memories currently achieve an endurance of up to 10000 write/erase cycles with a clear distinction between ON and OFF reading currents. ON and OFF threshold voltages follow a Gaussian distribution. Temperature dependent measurements of CuTCNQ based organic memories show a semiconductor like behavior for the ON state. The retention time of the ON state exceeded 60 hours at room temperature. Electrical switching of CuTCNQ memories in air was virtually not affected by temperatures up to 80°C, but becomes erratic at 120°C. The CuTCNQ material itself already starts to decompose around 200°C in presence of oxygen as shown by thermogravimetric analysis.

Copyright

References

Hide All
1. Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Ching, U.I., and Moon, J.T., Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International pp. 587 – 590 (2004).
2. Ahn, S.J., Song, Y.J., Jeong, C.W., Shin, J.M., Fai, Y., Hwang, Y.N., Lee, S.H., Ryoo, K.C., Lee, S.Y., Park, J.H., Horii, H., Ha, Y.H., Yi, J.H., Kuh, B.H., Koh, G.H., Jeong, G.T., Jeong, H.S., Kim, K., and Ryu, B.I., Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International pp. 907910 (2004).
3. Kozicki, M.N., Park, M., and Mitkova, M., IEEE Trans. Nanotechnol. 4, 331 (2005).
4. Potember, R.S., Poehler, T.O., and Cowan, D.O., Appl. Phys. Lett. 34, 405 (1979).
5. Heintz, R.A., Zhao, H., Ouyang, X., Grandinetti, G., Cowen, J., Dunbar, K.R., Inorg. Chem. 38, 144 (1999).
6. Müller, R., Jonge, S. De, Myny, K., Wouters, D.J., Genoe, J., and Heremans, P., Solid-State Electronics 50, (2006).
7. Müller, R., Jonge, S. De, Myny, K., Wouters, D.J., Genoe, J., and Heremans, P., MRS Spring Meeting 2006, San Francisco (USA).
8. Müller, R., Jonge, S. De, Myny, K., Wouters, D.J., Genoe, J., and Heremans, P., Appl Phys Lett. 89, 223501 (2006).
9. Müller, R., Genoe, J., and Heremans, P., 1st International Conference on Memory Technology and Design (ICMTD), May 21-25, 2005, proceedings pp 181183.
10. Joo, W.-J., Choi, T.-L., Lee, J., Lee, S. K., Jung, M.-S., Kim, N., and Kim, J. M., J. Phys. Chem. B 110, 23812 (2006).
11. Kever, T., Nauenheim, C., Böttger, U., and Waser, R., Thin Solid Films 515, 1893 (2006).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed