Skip to main content Accessibility help
×
Home

Electrical Characterization of Phosphorus Doped Ion Beam Synthesised CoSi2/Si Schottky Barrier Diodes.

  • R. S. Spraggs (a1), G. Pananakakis (a2), D. Bauza (a2), K. J. Reeson (a1), R. M. Gwilliam (a1), T. D. Hunt (a1) and B. J. Sealy (a1)...

Abstract

The current/voltage characteristics of ion beam synthesised CoSi2/Si (n - type) Schottky barrier diodes implanted with phosphorus to doses between 5 × 1012 and 2 × 1013 ions cm-2are examined after annealing at temperatures in the range 400° - 1000°C. For each dose of implanted phosphorus, the effective barrier height of the CoSi2/Si interface is successively reduced as the anneal temperature increases. The results of Secondary Ion Mass Spectroscopy (SIMS) analysis indicate that these changes are due to an increase in the space charge density at the interface. For lower annealing temperatures the increase in space charge density is attributed to activation of the phosphorus in the tail of the dopant distribution which extends across the CoSi2/Si interface. For higher annealing temperatures larger increases in the space charge density are attributed to a modified dopant distribution resulting from phosphorus diffusion and activation at the interface. For doses of 1 × 1014 P* cm-2and 2×1015P*cm2, ohrnie characteristics are seen after annealing at temperatures of 1000°C and 500°C respectively.

Copyright

References

Hide All
1 White, A. E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett., 50, 95, 1987.
2 Van Ommen, A. H., Ottenheim, J. J. M., Theunissen, A. M. L., and Mouwen, A. G., Appl. Phys. Lett, 53, 669, 1988.
3 Reeson, K. J., Spraggs, R. S., Gwilliam, R. M., Webb, R. P., Sealy, B. J., and De Veirman, A., Vacuum., 42, 1163, 1991.
4 Barbour, J. C., Picraux, S. and Doyle, B. L., Mat. Res. Soc. Proc, 107, 269, 1988.
5 Kohlhof, K., Manu, S., Stritzker, B. and Jager, W., Nucl Instrum & Methods., B39, 431, 1989.
6 Andrews, J. M., J. Vac. Sci. & Technol., 11, 972, 1974.
7 Levi, A. F. J., Tung, R. T., Batstone, J. L., and Anzolwar, M., Mat. Res. Soc. Proc., 107, 259, 1988.
8 Hensel, J. C., Levi, A. F. J., Tung, R. T. and Gibson, J. M., Appl. Phys. Lett, 47, 151, 1985.
9 White, A. E., Short, K. T., Dynes, R. C., Hull, R., and Vandenberg, J. M., Nucl Instrum & Methods., B39, 253, 1989.
10 Spraggs, R. S., Pananakakis, G., Bauza, D., Reeson, K. J. and Sealy, B. J., IEE Electron Utt., 28, 296, 1992.
11 Spraggs, R. S., Pananakakis, G., Bauza, D., Reeson, K. J. and Sealy, B. J., IEE Electron Utt., 28, 515, 1992.
12 Schuppen, A., Mantl, S., Vescan, L., Woiwood, S., Sjoreen, T. P., and Lüth, H., Mat. Sci and Engin., B, 1992.
13 Sze, S. M., “Physics of Semiconductor Devices” (2nd ed. New York Wiley, 1981)
14 Padovani, F. A., and Stratton, R., Solid-State Electron., 9, 695, 1966.
15 Crowell, C. R., and Rideout, V. L., Solid-State Electron., 12, 89, 1969.
16 Shannon, J. M., Solid-State Electron., 19, 537, 1976.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed