Skip to main content Accessibility help

Electrical Characterization of N+-implanted n-type ZnO Single Crystals: p-n Homojunction and Deep Level Defects

  • Qilin Gu (a1), Xuemin Dai (a2), Chi-Chung Ling (a3), Shijie Xu (a4), Liwu Lu (a5), Gerhard Brauer (a6), Wolfgang Anwand (a7) and Wolfgang Skorupa (a8)...


Unintentionally doped n-type ZnO single crystals were implanted by nitrogen ions with different fluences of 1013, 1014 and 1015 cm−2 respectively. ZnO p-n homojunction was successfully fabricated due to the formation of p-type layer after 650°C post-implantation annealing in air for 30 minutes. Further thermal evolution of deep level defects was studied through thermal annealing up to 1200°C. Electrical characterization techniques including current-voltage (I-V), capacitance-voltage (C-V), Deep Level Transient Spectroscopy (DLTS) and double-correlation DLTS (DDLTS) were used for investigating the control sample, all the as-implanted and annealed samples through Au/n-ZnO Schottky diodes as well as ZnO p-n junctions. Detailed electrical properties of fabricated devices and characteristics of implantation induced defects were analyzed based on plentiful DLTS spectra. Moreover, low-temperature photoluminescence experiments of all the as-implanted and annealed samples were performed and the correlation between results from electrical and optical characterizations was discussed.



Hide All
1. Park, C. H., Zhang, S. B., and Wei, S. –H., Phys. Rev. B 66, 073202 (2002).10.1103/PhysRevB.66.073202
2. Yan, Y. F., Zhang, S. B., and Pantelides, S. T., Phys. Rev. Lett. 86, 5723 (2001).10.1103/PhysRevLett.86.5723
3. Chen, Z. Q., Sekiguchi, T., Yuan, X. L., Maekawa, M., and Kawasuso, A., J. Phys.: Condens. Matter 16, S293 (2004).
4. Georgobiani, A. N., Gruzintsev, A. N., Volkov, V. T., Vorobiev, M. O., Demin, V. I., and Dravin, V. A., Nucl. Instrum. Methods Phys. Res. A 514, 117 (2003).
5. Brauer, G., Anwand, W., Skorupa, W., Kuriplach, J., Melikhova, O. and Moisson, C., Phys. Rev. B 74, 045208 (2006).
6. Auret, F. D., Nel, J. M., Hayes, M., Wu, L., Wesch, W., and Wendler, E., Superlattices Microstruct. 39, 17 (2006)
7. Auret, F. D., Goodman, S. A., Hayes, M., Legodi, M. J., van, H. A. , Laarhoven, and Look, D. C., Appl. Phys. Lett. 79, 3074 (2001).
8. Wenckstern, H. von, Pickenhain, R., Schmidt, H., Brandt, M., Biehne, G., and Brauer, G., Appl. Phys. Lett. 89, 092122 (2006).10.1063/1.2335798
9. Tuomisto, F., Saarinen, K., Look, D. C., and Farlow, G. C., Phys. Rev. B 72, 085206 (2005).
10. Vlasenko, L. S., and Watkins, G. D., Phys. Rev. B 71, 125210 (2005).10.1103/PhysRevB.71.125210
11. Chen, Z. Q., Kawasuso, A., Xu, Y., Naramoto, H., Yuan, X. L., Sekiguchi, T., Suzukiand, R., and Ohdaira, T., J. Appl. Phys. 97, 13528 (2005).10.1063/1.1821636
12. Janotti, A. and Van de Walle, C. G., Appl. Phys. Lett. 87, 122102 (2005).10.1063/1.2053360
13. Dai, X. M., Gu, Q. L., Xu, S. J., Ling, C. C., Brauer, G., Anwand, W., and Skorupa, W., in preparation for submitting to Phys. Rev. B



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed