Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T21:53:58.288Z Has data issue: false hasContentIssue false

Electrical Characterization of Hg1−xCdxTe Alloys*

Published online by Cambridge University Press:  15 February 2011

S. L. Lehoczky
Affiliation:
McDonnell Douglas Research Laboratories, McDonnell Douglas Corporation St. Louis, Missouri 63166 USA
C. J. Summers
Affiliation:
McDonnell Douglas Research Laboratories, McDonnell Douglas Corporation St. Louis, Missouri 63166 USA
F. R. Szofran
Affiliation:
McDonnell Douglas Research Laboratories, McDonnell Douglas Corporation St. Louis, Missouri 63166 USA
B. G. Martin
Affiliation:
McDonnell Douglas Research Laboratories, McDonnell Douglas Corporation St. Louis, Missouri 63166 USA
Get access

Abstract

Theoretical models are described for calculations of charge-carrier concentrations, Fermi energy, and conduction-electron mobility as functions of x, temperature, and ionized- and neutral-defect concentrations in Hg1−xCdxTe alloys. Measurements are reported of electron concentration and electron mobility from 5–300 K for alloys with 0.17 < ˗ < 0.30. The electrical data are in reasonable agreement with theory and were analyzed to obtain estimates of donor and acceptor state concentrations. The electron inobilities are calculated in terms of a microscopic theory of electrical conduction derived from the solution of the Boltzmann equation for the perturbed steady-state electron distribution function and show that longitudinal opticalphonon and charged and neutral defect scattering are the dominant mobility-limiting mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

+

Present address: Aerojet Electro-Systems Company, Azusa, CA 91702.

*

This work was supported in part by NASA contract NAS8-33107, in part by AFOSR contract F49620-78-C-0072, and in part by the McDonnell Douglas Independent Research and Development program.

References

REFERENCES

1.Scott, W., J. Appl. Phys. 43, 1055 (1972).Google Scholar
2.Long, D., Phys. Rev. 176, 923 (1968).Google Scholar
3.Verié, C., Phys. Status Solidi 17, 889 (1966).Google Scholar
4.Giriat, W., Dzuiba, Z., Galazka, R. R., Sosnowski, L. and Zakrzewski, T., Proceedings of the SeventhInternational Conference on the Physics of Semiconductors, edited by M. Hulin(Academic, New York,1964), p. 1251.Google Scholar
5.Galazka, R. R. and Sosnowski, L., Phys. Status Solidi 20, 113 (1967).Google Scholar
6.Segall, B., Lorenz, M. R. and Halsted, R. E., Phys. Rev. 129, 2471 (1963).Google Scholar
7.Ivanov-Omskii, V. I., Kolomiets, B. T., Ogorodnikov, V. K. and Smekalova, K. P., Sov. Phys. Semicond. 4, 214 (1970).Google Scholar
8.Lehoczky, S. L., Broerman, J. G., Nelson, D. A. and Whitsett, C. R., Phys. Rev. B 9, 1598 (1974).Google Scholar
9.Nelson, D. A., Broerman, J. G., Summers, C. J. and Whitsett, C. R., Phys. Rev. B 18, 1658 (1978).Google Scholar
10.Kane, E. O., J. Phys. Chem. Solids 1, 249 (1957).Google Scholar
11.Lehoczky, S. L., Szofran, F. R. and Martin, B. G., “Advanced Methods for Preparation and Characterization of Infrared Detector Materials,” McDonnell Douglas Report MDC Q0717, NASA Contract NAS8-33107 (July 1980).Google Scholar
12.van der Pauw, L. J., Philips Res. Rep. 13, 1 (1958).Google Scholar
13.Schmit, J. L., J. Appl. Phys. 41, 2876 (1970).Google Scholar
14.Howarth, D. J. and Sondheimer, E. M., Proc. Roy. Soc. A219, 53 (1953).Google Scholar
15.Kohler, M., Z. Phys. 125, 679 (1949).Google Scholar
16.Ehrenreich, H., J. Phys. Chem. Solids 2, 131 (1975).Google Scholar
17.Schmit, J. L. and Stelzer, E. L., J. Appl. Phys. 40, 4865 (1969).Google Scholar
18.Kinch, M. A. and Buss, D. D., The Physics of Semimetals and Narrow-Gap Semiconductors, Ed. by Carter, D. L. and Bate, R. T., (Pergammon Press, 1971), p. 461.Google Scholar
19.Moritani, A., Taniquchi, K. and Hamaguchi, C., J. Phys. Soc. Jpn. 34, 79 (1973).Google Scholar
20.Ivanov-Omskii, V. I., Kolomiets, B. T., Markov, Yu. F., Mekhtiev, A. Sh. and Smekalova, K. P., Phys. Status Solidi 32, K83 (1969);Google Scholar
20aSoy. Phys. Semicond. 1, 1203 (1967).Google Scholar
21.Ehrenreich, H., J. Phys. Chem. Solids 8, 130 (1959).Google Scholar