Skip to main content Accessibility help
×
Home

Electrical Characterization of Defects Introduced in n-GaN During High Energy Proton and He-Ion Irradiation

  • S. A. Goodman (a1), F. D. Auret (a2), F. K. Koschnick (a2), J.-M. Spaeth (a2), B. Beaumont (a3) and P. Gibart (a3)...

Abstract

We report on the electrical properties of defects as determined by deep level transient spectroscopy (DLTS) introduced in epitaxially grown n-GaN by 2.0 MeV protons and 5.4 MeV He-ions. After He-ion bombardment three electron traps ER3 (Ec - 0.196 eV), ER4 (Ec - 0.78 eV), and ER5 (Ec - 0.95 eV) were introduced uniformly in the region profiled by DLTS with introduction rates of 3270 ± 200, 1510 ± 300, and 3030 ± 500 cm-1 respectively. Capture cross section measurements revealed that the electron capture kinetics of ER5 is similar to that of a line defect. A defect with similar electronic properties as ER3 is observed after 2.0 MeV proton irradiation. The emission rate of ER3 depends on the electric field strength in the space-charge region. This emission rate is modelled according to the Poole-Frenkel distortion of a square well with a radius of 20 ± 2 Å or alternatively, a Gaussian well with a characteristic width of 6.0 ± 1 Å. Hence, we conclude that ER1 is a point defect which appears to have an acceptor like character. Two additional electron traps, ER1 (Ec -0.13 eV) and ER2 (Ec - 0.16eV) with introduction rates of 30 ± 10 and 600 ± 100 cm-1 not thusfar observed after electron or He-ion bombardment were observed after proton irradiation.

Copyright

References

Hide All
[1] Doverspike, K., Wickenden, A. E., Binarii, S. C., Gaskill, D. K. and Freitas, J. A., Mat. Res. Soc. Symp. Proc. Vol. 395, p897 (1996).
[2] Nakamura, S. and Fasol, G., in “The blue laser diode”, (Springer Verlag, 1997).
[3] Lambsdorff, M., Kohl, J., Rosenzweig, J., Axmann, A. and Schneider, J., Appl. Phys. Lett. 58, 1881 (1991).
[4] Rao, V. M., Hong, W-P, Caneau, C., Chang, G-K., Papanicolaou, N., and Dietrich, H. B., J. Appl. Phys. 70, 3943 (1991).
[5] Linde, M., Uftring, S.J., Watkins, G.D., Harle, V. and Scholz, F., Phys. Rev. B 55, R10177 (1997).
[6] Look, D.C., Reynolds, D.C., Hemsky, J.W., Sizelove, J.R., Jones, R.L. and Molnar, R.J., Phys. Rev. Lett. 79, 2273 (1997).
[7] Fang, Z-Q., Look, D. C., Kim, W., Fan, Z., Botchkarev, A. and Morkoc, H., Appl. Phys. Lett. 72, 2277 (1998).
[8] Hacke, P., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Appl. Phys. Lett. 63, 2676 (1993).
[9] Sheu, J.K., Su, Y.K., Chi, G.C., Chen, W.C., Chen, C.Y., Huang, C.N., Hong, J.M., Yu, Y.C., Wang, C.W., and Lin, E.K., J. Appl. Phys. 83, 3172 (1998).
[10] Ruminov, S., Liliental-Weber, Z., Washburn, J., Duxstad, K.J., Hailer, E.E., Fan, Z.-F., Mohammed, S.N, Kim, W., Botchkarev, A.E., and Morkoc, H., Appl. Phys. Lett. 69, 1556 (1996).
[11] Hacke, P., Detchprohm, T., Hiramatsu, K. and Sawaki, N., Appl. Phys. Lett. 63, 2676, (1993).
[12] Gotz, W., Johnson, N. M., Amano, H. and Akasaki, I., Appl. Phys. Lett. 65, 463 (1994).
[13] Neugebauer, J. and Walle, C.G. Van de, Phys. Rev. B 50, 8067 (1994).
[14] Mattila, T., Seitsonen, A.P. and Nieminen, R.M., Phys. Rev. B 54, 1474 (1996).
[15] Wosinski, T., J. Appl. Phys. 65, 1566 (1988).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed